SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Steward C) ;lar1:(umu)"

Sökning: WFRF:(Steward C) > Umeå universitet

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Datry, T., et al. (författare)
  • A global analysis of terrestrial plant litter dynamics in non-perennial waterways
  • 2018
  • Ingår i: Nature Geoscience. - : Nature Publishing Group. - 1752-0894 .- 1752-0908. ; 11:7, s. 497-503
  • Tidskriftsartikel (refereegranskat)abstract
    • Perennial rivers and streams make a disproportionate contribution to global carbon (C) cycling. However, the contribution of intermittent rivers and ephemeral streams (IRES), which sometimes cease to flow and can dry completely, is largely ignored although they represent over half the global river network. Substantial amounts of terrestrial plant litter (TPL) accumulate in dry riverbeds and, upon rewetting, this material can undergo rapid microbial processing. We present the results of a global research collaboration that collected and analysed TPL from 212 dry riverbeds across major environmental gradients and climate zones. We assessed litter decomposability by quantifying the litter carbon-to-nitrogen ratio and oxygen (O2) consumption in standardized assays and estimated the potential short-term CO2 emissions during rewetting events. Aridity, cover of riparian vegetation, channel width and dry-phase duration explained most variability in the quantity and decomposability of plant litter in IRES. Our estimates indicate that a single pulse of CO2 emission upon litter rewetting contributes up to 10% of the daily CO2 emission from perennial rivers and stream, particularly in temperate climates. This indicates that the contributions of IRES should be included in global C-cycling assessments.
  •  
2.
  • von Schiller, D., et al. (författare)
  • Sediment Respiration Pulses in Intermittent Rivers and Ephemeral Streams
  • 2019
  • Ingår i: Global Biogeochemical Cycles. - : American Geophysical Union (AGU). - 0886-6236 .- 1944-9224. ; 33:10, s. 1251-1263
  • Tidskriftsartikel (refereegranskat)abstract
    • Intermittent rivers and ephemeral streams (IRES) may represent over half the global stream network, but their contribution to respiration and carbon dioxide (CO2) emissions is largely undetermined. In particular, little is known about the variability and drivers of respiration in IRES sediments upon rewetting, which could result in large pulses of CO2. We present a global study examining sediments from 200 dry IRES reaches spanning multiple biomes. Results from standardized assays show that mean respiration increased 32-fold to 66-fold upon sediment rewetting. Structural equation modeling indicates that this response was driven by sediment texture and organic matter quantity and quality, which, in turn, were influenced by climate, land use, and riparian plant cover. Our estimates suggest that respiration pulses resulting from rewetting of IRES sediments could contribute significantly to annual CO2 emissions from the global stream network, with a single respiration pulse potentially increasing emission by 0.2-0.7%. As the spatial and temporal extent of IRES increases globally, our results highlight the importance of recognizing the influence of wetting-drying cycles on respiration and CO2 emissions in stream networks.
  •  
3.
  • Shumilova, Oleksandra, et al. (författare)
  • Simulating rewetting events in intermittent rivers and ephemeral streams : A global analysis of leached nutrients and organic matter
  • 2019
  • Ingår i: Global Change Biology. - : WILEY. - 1354-1013 .- 1365-2486. ; 25:5, s. 1591-1611
  • Tidskriftsartikel (refereegranskat)abstract
    • Climate change and human pressures are changing the global distribution and the extent of intermittent rivers and ephemeral streams (IRES), which comprise half of the global river network area. IRES are characterized by periods of flow cessation, during which channel substrates accumulate and undergo physico-chemical changes (preconditioning), and periods of flow resumption, when these substrates are rewetted and release pulses of dissolved nutrients and organic matter (OM). However, there are no estimates of the amounts and quality of leached substances, nor is there information on the underlying environmental constraints operating at the global scale. We experimentally simulated, under standard laboratory conditions, rewetting of leaves, riverbed sediments, and epilithic biofilms collected during the dry phase across 205 IRES from five major climate zones. We determined the amounts and qualitative characteristics of the leached nutrients and OM, and estimated their areal fluxes from riverbeds. In addition, we evaluated the variance in leachate characteristics in relation to selected environmental variables and substrate characteristics. We found that sediments, due to their large quantities within riverbeds, contribute most to the overall flux of dissolved substances during rewetting events (56%-98%), and that flux rates distinctly differ among climate zones. Dissolved organic carbon, phenolics, and nitrate contributed most to the areal fluxes. The largest amounts of leached substances were found in the continental climate zone, coinciding with the lowest potential bioavailability of the leached OM. The opposite pattern was found in the arid zone. Environmental variables expected to be modified under climate change (i.e. potential evapotranspiration, aridity, dry period duration, land use) were correlated with the amount of leached substances, with the strongest relationship found for sediments. These results show that the role of IRES should be accounted for in global biogeochemical cycles, especially because prevalence of IRES will increase due to increasing severity of drying events.
  •  
4.
  • COCHLAN, William P, et al. (författare)
  • SPATIAL-DISTRIBUTION OF VIRUSES, BACTERIA AND CHLOROPHYLL-A IN NERITIC, OCEANIC AND ESTUARINE ENVIRONMENTS
  • 1993
  • Ingår i: Marine Ecology Progress Series. - Oldendorf : Inter-Research. - 0171-8630 .- 1616-1599. ; 92:1-2, s. 77-87
  • Tidskriftsartikel (refereegranskat)abstract
    • The spatial distribution of viruses was investigated in the coastal and oceanic waters of the Southern California Bight, USA, and the brackish waters of the Gulf of Bothnia, Sweden, using the direct harvesting technique and transmission electron microscopy. The vertical and horizontal distributions of viruses were examined in relation to bacterial abundance and chlorophyll a. Total virus abundances ranged from 0.3 to 52 X 10(9) l-1; higher concentrations of viruses were found in the upper 50 m of the water column and in coastal environments. Viruses with capsid diameters less than 60 nm dominated the virus community, were morphologically characterized as bacteriophages and were responsible for most of the observed spatial variability. Bacteria abundance alone explained 67 % of the spatial variability in virus numbers, thereby suggesting that bacteria constituted the major host organisms for viruses in these physically diverse habitats.
  •  
5.
  • Wikner, Johan, 1961-, et al. (författare)
  • NUCLEIC-ACIDS FROM THE HOST BACTERIUM AS A MAJOR SOURCE OF NUCLEOTIDES FOR 3 MARINE BACTERIOPHAGES
  • 1993
  • Ingår i: FEMS Microbiology Ecology. - Amsterdam : Elsevier. - 0168-6496 .- 1574-6941. ; 12:4, s. 237-248
  • Tidskriftsartikel (refereegranskat)abstract
    • The incorporation of P-32-phosphorus into marine bacteriophage nucleic acid was studied in culture experiments to investigate the source of nucleotides used by the phage. We consistently found that the P-32-specific activity in the phage genome increased during the 11 h incubation and was low relative to the specific activity in the medium, averaging 21% (+/- SD 5.9) for the three phage isolates. This was in accordance with a mathematical model where most of the nucleotides for phage DNA synthesis were derived from the host cell nucleic acid rather than de novo synthesis. We propose that this metabolic strategy may be common among marine phages, as an adaptation to a nutrient poor environment. Consequently, the contribution of free DNA to the dissolved fraction through phage lysis of bacteria, may be less that previously thought. Also during radiolabelling of bacteriophages in natural water samples, isotope dilution may be dependent on the specific growth rate of the bacterial host.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy