SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Stingl Christoph) ;spr:eng"

Sökning: WFRF:(Stingl Christoph) > Engelska

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Rosenling, Therese, et al. (författare)
  • Profiling and Identification of Cerebrospinal Fluid Proteins in a Rat EAE Model of Multiple Sclerosis.
  • 2012
  • Ingår i: Journal of Proteome Research. - 1535-3893 .- 1535-3907. ; 11:4, s. 2048-2060
  • Tidskriftsartikel (refereegranskat)abstract
    • The experimental autoimmune encephalomyelitis (EAE) model resembles certain aspects of multiple sclerosis (MScl), with common features such as motor dysfunction, axonal degradation, and infiltration of T-cells. We studied the cerebrospinal fluid (CSF) proteome in the EAE rat model to identify proteomic changes relevant for MScl disease pathology. EAE was induced in male Lewis rats by injection of myelin basic protein (MBP) together with complete Freund's adjuvant (CFA). An inflammatory control group was injected with CFA alone, and a nontreated group served as healthy control. CSF was collected at day 10 and 14 after immunization and analyzed by bottom-up proteomics on Orbitrap LC-MS and QTOF LC-MS platforms in two independent laboratories. By combining results, 44 proteins were discovered to be significantly increased in EAE animals compared to both control groups, 25 of which have not been mentioned in relation to the EAE model before. Lysozyme C1, fetuin B, T-kininogen, serum paraoxonase/arylesterase 1, glutathione peroxidase 3, complement C3, and afamin are among the proteins significantly elevated in this rat EAE model. Two proteins, afamin and complement C3, were validated in an independent sample set using quantitative selected reaction monitoring mass spectrometry. The molecular weights of the identified differentially abundant proteins indicated an increased transport across the blood-brain barrier (BBB) at the peak of the disease, caused by an increase in BBB permeability.
  •  
2.
  • Stingl, Christoph, et al. (författare)
  • Uncovering Effects of Ex Vivo Protease Activity during Proteomics and Peptidomics Sample Extraction in Rat Brain Tissue by Oxygen-18 Labeling
  • 2014
  • Ingår i: Journal of Proteome Research. - : American Chemical Society (ACS). - 1535-3893 .- 1535-3907. ; 13:6, s. 2807-2817
  • Tidskriftsartikel (refereegranskat)abstract
    • In biological samples, proteins and peptides are altered by proteolytic activity. The actual ex vivo form of the peptidome or proteome analyzed, therefore, does not always reflect the natural in vivo state. Sample stabilization and sample treatment are thereby decisive for how far these two states diverge. To assess ex vivo formation of peptides, we used enzymatic incorporation of oxygen-18 water during proteolysis (PALeO approach) to label ex-vivo-formed peptides in rodent brain tissue. Rates of ex-vivo-formed peptides were determined in 25 samples that were stabilized and treated by six different protocols, whereby samples were subjected to different conditions such as temperature, urea concentration, and duration of treatment. Samples were measured by nano LC-Orbitrap-MS, and incorporation of oxygen-18 was determined by MS/MS database search and analysis of the precursor isotope pattern. Extent of ex vivo degradations was affected relevantly by the sample treatment protocol applied and stopped almost completely by heat stabilization. Determination of the formation state by oxygen-18 incorporation by MS/MS database search correlated well to more elaborate analysis of the MS isotope pattern. Overall, oxygen-18 labeling in combination with shotgun data-acquisition and MS/MS database search offers an adjuvant and easily applicable tool to monitor sample quality and fidelity in peptide and neuropeptide sample preparations.
  •  
3.
  • Stoop, Marcel P, et al. (författare)
  • Quantitative proteomics and metabolomics analysis of normal human cerebrospinal fluid samples.
  • 2010
  • Ingår i: Molecular & Cellular Proteomics. - 1535-9476 .- 1535-9484. ; 9:9, s. 2063-75
  • Tidskriftsartikel (refereegranskat)abstract
    • The analysis of cerebrospinal fluid (CSF) is used in biomarker discovery studies for various neurodegenerative central nervous system (CNS) disorders. However, little is known about variation of CSF proteins and metabolites between patients without neurological disorders. A baseline for a large number of CSF compounds appears to be lacking. To analyze the variation in CSF protein and metabolite abundances in a number of well-defined individual samples of patients undergoing routine, non-neurological surgical procedures, we determined the variation of various proteins and metabolites by multiple analytical platforms. A total of 126 common proteins were assessed for biological variations between individuals by ESI-Orbitrap. A large spread in inter-individual variation was observed (relative standard deviations [RSDs] ranged from 18 to 148%) for proteins with both high abundance and low abundance. Technical variation was between 15 and 30% for all 126 proteins. Metabolomics analysis was performed by means of GC-MS and nuclear magnetic resonance (NMR) imaging and amino acids were specifically analyzed by LC-MS/MS, resulting in the detection of more than 100 metabolites. The variation in the metabolome appears to be much more limited compared with the proteome: the observed RSDs ranged from 12 to 70%. Technical variation was less than 20% for almost all metabolites. Consequently, an understanding of the biological variation of proteins and metabolites in CSF of neurologically normal individuals appears to be essential for reliable interpretation of biomarker discovery studies for CNS disorders because such results may be influenced by natural inter-individual variations. Therefore, proteins and metabolites with high variation between individuals ought to be assessed with caution as candidate biomarkers because at least part of the difference observed between the diseased individuals and the controls will not be caused by the disease, but rather by the natural biological variation between individuals.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy