SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Stomrud E) ;pers:(Blennow Kaj)"

Sökning: WFRF:(Stomrud E) > Blennow Kaj

  • Resultat 1-10 av 21
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Jansen, Willemijn J, et al. (författare)
  • Association of Cerebral Amyloid-β Aggregation With Cognitive Functioning in Persons Without Dementia.
  • 2018
  • Ingår i: JAMA psychiatry. - : American Medical Association (AMA). - 2168-6238 .- 2168-622X. ; 75:1, s. 84-95
  • Tidskriftsartikel (refereegranskat)abstract
    • Cerebral amyloid-β aggregation is an early event in Alzheimer disease (AD). Understanding the association between amyloid aggregation and cognitive manifestation in persons without dementia is important for a better understanding of the course of AD and for the design of prevention trials.To investigate whether amyloid-β aggregation is associated with cognitive functioning in persons without dementia.This cross-sectional study included 2908 participants with normal cognition and 4133 with mild cognitive impairment (MCI) from 53 studies in the multicenter Amyloid Biomarker Study. Normal cognition was defined as having no cognitive concerns for which medical help was sought and scores within the normal range on cognitive tests. Mild cognitive impairment was diagnosed according to published criteria. Study inclusion began in 2013 and is ongoing. Data analysis was performed in January 2017.Global cognitive performance as assessed by the Mini-Mental State Examination (MMSE) and episodic memory performance as assessed by a verbal word learning test. Amyloid aggregation was measured with positron emission tomography or cerebrospinal fluid biomarkers and dichotomized as negative (normal) or positive (abnormal) according to study-specific cutoffs. Generalized estimating equations were used to examine the association between amyloid aggregation and low cognitive scores (MMSE score ≤27 or memory z score≤-1.28) and to assess whether this association was moderated by age, sex, educational level, or apolipoprotein E genotype.Among 2908 persons with normal cognition (mean [SD] age, 67.4 [12.8] years), amyloid positivity was associated with low memory scores after age 70 years (mean difference in amyloid positive vs negative, 4% [95% CI, 0%-7%] at 72 years and 21% [95% CI, 10%-33%] at 90 years) but was not associated with low MMSE scores (mean difference, 3% [95% CI, -1% to 6%], P = .16). Among 4133 patients with MCI (mean [SD] age, 70.2 [8.5] years), amyloid positivity was associated with low memory (mean difference, 16% [95% CI, 12%-20%], P < .001) and low MMSE (mean difference, 14% [95% CI, 12%-17%], P < .001) scores, and this association decreased with age. Low cognitive scores had limited utility for screening of amyloid positivity in persons with normal cognition and those with MCI. In persons with normal cognition, the age-related increase in low memory score paralleled the age-related increase in amyloid positivity with an intervening period of 10 to 15 years.Although low memory scores are an early marker of amyloid positivity, their value as a screening measure for early AD among persons without dementia is limited.
  •  
2.
  • Jansen, Willemijn J, et al. (författare)
  • Prevalence Estimates of Amyloid Abnormality Across the Alzheimer Disease Clinical Spectrum.
  • 2022
  • Ingår i: JAMA neurology. - : American Medical Association (AMA). - 2168-6157 .- 2168-6149. ; 79:3, s. 228-243
  • Tidskriftsartikel (refereegranskat)abstract
    • One characteristic histopathological event in Alzheimer disease (AD) is cerebral amyloid aggregation, which can be detected by biomarkers in cerebrospinal fluid (CSF) and on positron emission tomography (PET) scans. Prevalence estimates of amyloid pathology are important for health care planning and clinical trial design.To estimate the prevalence of amyloid abnormality in persons with normal cognition, subjective cognitive decline, mild cognitive impairment, or clinical AD dementia and to examine the potential implications of cutoff methods, biomarker modality (CSF or PET), age, sex, APOE genotype, educational level, geographical region, and dementia severity for these estimates.This cross-sectional, individual-participant pooled study included participants from 85 Amyloid Biomarker Study cohorts. Data collection was performed from January 1, 2013, to December 31, 2020. Participants had normal cognition, subjective cognitive decline, mild cognitive impairment, or clinical AD dementia. Normal cognition and subjective cognitive decline were defined by normal scores on cognitive tests, with the presence of cognitive complaints defining subjective cognitive decline. Mild cognitive impairment and clinical AD dementia were diagnosed according to published criteria.Alzheimer disease biomarkers detected on PET or in CSF.Amyloid measurements were dichotomized as normal or abnormal using cohort-provided cutoffs for CSF or PET or by visual reading for PET. Adjusted data-driven cutoffs for abnormal amyloid were calculated using gaussian mixture modeling. Prevalence of amyloid abnormality was estimated according to age, sex, cognitive status, biomarker modality, APOE carrier status, educational level, geographical location, and dementia severity using generalized estimating equations.Among the 19 097 participants (mean [SD] age, 69.1 [9.8] years; 10 148 women [53.1%]) included, 10 139 (53.1%) underwent an amyloid PET scan and 8958 (46.9%) had an amyloid CSF measurement. Using cohort-provided cutoffs, amyloid abnormality prevalences were similar to 2015 estimates for individuals without dementia and were similar across PET- and CSF-based estimates (24%; 95% CI, 21%-28%) in participants with normal cognition, 27% (95% CI, 21%-33%) in participants with subjective cognitive decline, and 51% (95% CI, 46%-56%) in participants with mild cognitive impairment, whereas for clinical AD dementia the estimates were higher for PET than CSF (87% vs 79%; mean difference, 8%; 95% CI, 0%-16%; P = .04). Gaussian mixture modeling-based cutoffs for amyloid measures on PET scans were similar to cohort-provided cutoffs and were not adjusted. Adjusted CSF cutoffs resulted in a 10% higher amyloid abnormality prevalence than PET-based estimates in persons with normal cognition (mean difference, 9%; 95% CI, 3%-15%; P = .004), subjective cognitive decline (9%; 95% CI, 3%-15%; P = .005), and mild cognitive impairment (10%; 95% CI, 3%-17%; P = .004), whereas the estimates were comparable in persons with clinical AD dementia (mean difference, 4%; 95% CI, -2% to 9%; P = .18).This study found that CSF-based estimates using adjusted data-driven cutoffs were up to 10% higher than PET-based estimates in people without dementia, whereas the results were similar among people with dementia. This finding suggests that preclinical and prodromal AD may be more prevalent than previously estimated, which has important implications for clinical trial recruitment strategies and health care planning policies.
  •  
3.
  • Pannee, Josef, 1979, et al. (författare)
  • The global Alzheimer's Association round robin study on plasma amyloid beta methods
  • 2021
  • Ingår i: Alzheimer's & Dementia. - : Wiley. - 1552-5260 .- 1552-5279. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction Blood-based assays to measure brain amyloid beta (A beta) deposition are an attractive alternative to the cerebrospinal fluid (CSF)-based assays currently used in clinical settings. In this study, we examined different blood-based assays to measure A beta and how they compare among centers and assays. Methods Aliquots from 81 plasma samples were distributed to 10 participating centers. Seven immunological assays and four mass-spectrometric methods were used to measure plasma A beta concentrations. Results Correlations were weak for A beta 42 while A beta 40 correlations were stronger. The ratio A beta 42/A beta 40 did not improve the correlations and showed weak correlations. Discussion The poor correlations for A beta 42 in plasma might have several potential explanations, such as the high levels of plasma proteins (compared to CSF), sensitivity to pre-analytical sample handling and specificity, and cross-reactivity of different antibodies. Different methods might also measure different pools of plasma A beta 42. We, however, hypothesize that greater correlations might be seen in future studies because many of the methods have been refined during completion of this study.
  •  
4.
  • Janelidze, Shorena, et al. (författare)
  • Plasma P-tau181 in Alzheimer's disease: relationship to other biomarkers, differential diagnosis, neuropathology and longitudinal progression to Alzheimer's dementia
  • 2020
  • Ingår i: Nature Medicine. - : Springer Science and Business Media LLC. - 1078-8956 .- 1546-170X. ; 26, s. 379-386
  • Tidskriftsartikel (refereegranskat)abstract
    • Plasma phosphorylated tau181 (P-tau181) might be increased in Alzheimer's disease (AD), but its usefulness for differential diagnosis and prognosis is unclear. We studied plasma P-tau181 in three cohorts, with a total of 589 individuals, including cognitively unimpaired participants and patients with mild cognitive impairment (MCI), AD dementia and non-AD neurodegenerative diseases. Plasma P-tau181 was increased in preclinical AD and further increased at the MCI and dementia stages. It correlated with CSF P-tau181 and predicted positive Tau positron emission tomography (PET) scans (area under the curve (AUC) = 0.87-0.91 for different brain regions). Plasma P-tau181 differentiated AD dementia from non-AD neurodegenerative diseases with an accuracy similar to that of Tau PET and CSF P-tau181 (AUC = 0.94-0.98), and detected AD neuropathology in an autopsy-confirmed cohort. High plasma P-tau181 was associated with subsequent development of AD dementia in cognitively unimpaired and MCI subjects. In conclusion, plasma P-tau181 is a noninvasive diagnostic and prognostic biomarker of AD, which may be useful in clinical practice and trials. Plasma P-tau18 level increased with progression of Alzheimer's disease (AD) and differentiated AD dementia from other neurodegenerative diseases, supporting its further development as a blood-based biomarker for AD.
  •  
5.
  • Mattsson, Niklas, et al. (författare)
  • Prevalence of the apolipoprotein E epsilon 4 allele in amyloid beta positive subjects across the spectrum of Alzheimers disease
  • 2018
  • Ingår i: Alzheimer's & Dementia. - : ELSEVIER SCIENCE INC. - 1552-5260 .- 1552-5279. ; 14:7, s. 913-924
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: Apolipoprotein E (APOE) epsilon 4 is the major genetic risk factor for Alzheimers disease (AD), but its prevalence is unclear because earlier studies did not require biomarker evidence of amyloid beta(A beta) pathology. Methods: We included 3451 A beta+ subjects (853 AD-type dementia, 1810 mild cognitive impairment, and 788 cognitively normal). Generalized estimating equation models were used to assess APOE epsilon 4 prevalence in relation to age, sex, education, and geographical location. Results: The APOE epsilon 4 prevalence was 66% in AD-type dementia, 64% in mild cognitive impairment, and 51% in cognitively normal, and it decreased with advancing age in A beta+ cognitively normal and A beta+ mild cognitive impairment (P amp;lt;.05) but not in A beta+ AD dementia (P =.66). The prevalence was highest in Northern Europe but did not vary by sex or education. Discussion: The APOE E4 prevalence in AD was higher than that in previous studies, which did not require presence of A beta pathology. Furthermore, our results highlight disease heterogeneity related to age and geographical location. (C) 2018 the Alzheimers Association. Published by Elsevier Inc. All rights reserved.
  •  
6.
  • Mattsson, Niklas, et al. (författare)
  • Prevalence of the apolipoprotein E ε4 allele in amyloid β positive subjects across the spectrum of Alzheimer's disease
  • 2018
  • Ingår i: Alzheimer's and Dementia. - : Wiley. - 1552-5260 .- 1552-5279. ; 14:7, s. 913-924
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: Apolipoprotein E (APOE) ε4 is the major genetic risk factor for Alzheimer's disease (AD), but its prevalence is unclear because earlier studies did not require biomarker evidence of amyloid β (Aβ) pathology. Methods: We included 3451 Aβ+ subjects (853 AD-type dementia, 1810 mild cognitive impairment, and 788 cognitively normal). Generalized estimating equation models were used to assess APOE ε4 prevalence in relation to age, sex, education, and geographical location. Results: The APOE ε4 prevalence was 66% in AD-type dementia, 64% in mild cognitive impairment, and 51% in cognitively normal, and it decreased with advancing age in Aβ+ cognitively normal and Aβ+ mild cognitive impairment (P <.05) but not in Aβ+ AD dementia (P =.66). The prevalence was highest in Northern Europe but did not vary by sex or education. Discussion: The APOE ε4 prevalence in AD was higher than that in previous studies, which did not require presence of Aβ pathology. Furthermore, our results highlight disease heterogeneity related to age and geographical location.
  •  
7.
  • Palmqvist, Sebastian, et al. (författare)
  • Discriminative Accuracy of Plasma Phospho-tau217 for Alzheimer Disease vs Other Neurodegenerative Disorders
  • 2020
  • Ingår i: Jama-Journal of the American Medical Association. - : American Medical Association (AMA). - 0098-7484. ; 324:8, s. 772-781
  • Tidskriftsartikel (refereegranskat)abstract
    • Key PointsQuestionWhat is the discriminative accuracy of plasma phospho-tau217 (P-tau217) for differentiating Alzheimer disease from other neurodegenerative disorders? FindingsIn this cross-sectional study that included 1402 participants from 3 selected cohorts, plasma P-tau217 discriminated Alzheimer disease from other neurodegenerative diseases (area under the receiver operating characteristic curve of 0.89 in a neuropathologically defined cohort and 0.96 in a clinically defined cohort), with performance that was significantly better than established Alzheimer disease plasma- and MRI-based biomarkers but not significantly different from key CSF- or PET-based biomarkers. MeaningAlthough plasma P-tau217 was able to discriminate Alzheimer disease from other neurodegenerative diseases, further research is needed to validate the findings in unselected and diverse populations, optimize the assay, and determine its potential role in clinical care. ImportanceThere are limitations in current diagnostic testing approaches for Alzheimer disease (AD). ObjectiveTo examine plasma tau phosphorylated at threonine 217 (P-tau217) as a diagnostic biomarker for AD. Design, Setting, and ParticipantsThree cross-sectional cohorts: an Arizona-based neuropathology cohort (cohort 1), including 34 participants with AD and 47 without AD (dates of enrollment, May 2007-January 2019); the Swedish BioFINDER-2 cohort (cohort 2), including cognitively unimpaired participants (n=301) and clinically diagnosed patients with mild cognitive impairment (MCI) (n=178), AD dementia (n=121), and other neurodegenerative diseases (n=99) (April 2017-September 2019); and a Colombian autosomal-dominant AD kindred (cohort 3), including 365 PSEN1 E280A mutation carriers and 257 mutation noncarriers (December 2013-February 2017). ExposuresPlasma P-tau217. Main Outcomes and MeasuresPrimary outcome was the discriminative accuracy of plasma P-tau217 for AD (clinical or neuropathological diagnosis). Secondary outcome was the association with tau pathology (determined using neuropathology or positron emission tomography [PET]). ResultsMean age was 83.5 (SD, 8.5) years in cohort 1, 69.1 (SD, 10.3) years in cohort 2, and 35.8 (SD, 10.7) years in cohort 3; 38% were women in cohort 1, 51% in cohort 2, and 57% in cohort 3. In cohort 1, antemortem plasma P-tau217 differentiated neuropathologically defined AD from non-AD (area under the curve [AUC], 0.89 [95% CI, 0.81-0.97]) with significantly higher accuracy than plasma P-tau181 and neurofilament light chain (NfL) (AUC range, 0.50-0.72; P<.05). The discriminative accuracy of plasma P-tau217 in cohort 2 for clinical AD dementia vs other neurodegenerative diseases (AUC, 0.96 [95% CI, 0.93-0.98]) was significantly higher than plasma P-tau181, plasma NfL, and MRI measures (AUC range, 0.50-0.81; P<.001) but not significantly different compared with cerebrospinal fluid (CSF) P-tau217, CSF P-tau181, and tau-PET (AUC range, 0.90-0.99; P>.15). In cohort 3, plasma P-tau217 levels were significantly greater among PSEN1 mutation carriers, compared with noncarriers, from approximately 25 years and older, which is 20 years prior to estimated onset of MCI among mutation carriers. Plasma P-tau217 levels correlated with tau tangles in participants with (Spearman rho =0.64; P<.001), but not without (Spearman =0.15; P=.33), beta -amyloid plaques in cohort 1. In cohort 2, plasma P-tau217 discriminated abnormal vs normal tau-PET scans (AUC, 0.93 [95% CI, 0.91-0.96]) with significantly higher accuracy than plasma P-tau181, plasma NfL, CSF P-tau181, CSF A beta 42:A beta 40 ratio, and MRI measures (AUC range, 0.67-0.90; P<.05), but its performance was not significantly different compared with CSF P-tau217 (AUC, 0.96; P=.22). Conclusions and RelevanceAmong 1402 participants from 3 selected cohorts, plasma P-tau217 discriminated AD from other neurodegenerative diseases, with significantly higher accuracy than established plasma- and MRI-based biomarkers, and its performance was not significantly different from key CSF- or PET-based measures. Further research is needed to optimize the assay, validate the findings in unselected and diverse populations, and determine its potential role in clinical care. This cross-sectional study compares the accuracy of plasma tau phosphorylated at threonine 217 (P-tau217) levels vs other plasma-, MRI-, CSF-, and PET-based markers for distinguishing Alzheimer from other neurodegenerative diseases in 3 cohorts in Arizona, Sweden, and Columbia with or at risk for dementia.
  •  
8.
  • Voevodskaya, O., et al. (författare)
  • Brain myoinositol as a potential marker of amyloid-related pathology: A longitudinal study
  • 2019
  • Ingår i: Neurology. - : Ovid Technologies (Wolters Kluwer Health). - 0028-3878 .- 1526-632X. ; 92:5, s. E395-E405
  • Tidskriftsartikel (refereegranskat)abstract
    • ObjectiveTo investigate the association between longitudinal changes in proton magnetic resonance spectroscopy (MRS) metabolites and amyloid pathology in individuals without dementia, and to explore the relationship between MRS and cognitive decline.MethodsIn this longitudinal multiple time point study (a subset of the Swedish BioFINDER), we included cognitively healthy participants, individuals with subjective cognitive decline, and individuals with mild cognitive impairment. MRS was acquired serially in 294 participants (670 individual spectra) from the posterior cingulate/precuneus. Using mixed-effects models, we assessed the association between MRS and baseline -amyloid (A), and between MRS and the longitudinal Mini-Mental State Examination, accounting for APOE, age, and sex.ResultsWhile baseline MRS metabolites were similar in A positive (A+) and negative (A-) individuals, in the A+ group, the estimated rate of change was +1.9%/y for myo-inositol (mI)/creatine (Cr) and -2.0%/y for N-acetylaspartate (NAA)/mI. In the A- group, mI/Cr and NAA/mI yearly change was -0.05% and +1.2%; however, this was not significant across time points. The mild cognitive impairment A+ group showed the steepest MRS changes, with an estimated rate of +2.93%/y (p = 0.07) for mI/Cr and -3.55%/y (p < 0.01) for NAA/mI. Furthermore, in the entire cohort, we found that A+ individuals with low baseline NAA/mI had a significantly higher rate of cognitive decline than A+ individuals with high baseline NAA/mI.ConclusionWe demonstrate that the longitudinal change in mI/Cr and NAA/mI is associated with underlying amyloid pathology. MRS may be a useful noninvasive marker of A-related processes over time. In addition, we show that in A+ individuals, baseline NAA/mI may predict the rate of future cognitive decline.
  •  
9.
  • Brum, Wagner S., et al. (författare)
  • A two-step workflow based on plasma p-tau217 to screen for amyloid β positivity with further confirmatory testing only in uncertain cases
  • 2023
  • Ingår i: Nature Aging. - 2662-8465. ; 3:9, s. 1079-1090
  • Tidskriftsartikel (refereegranskat)abstract
    • Cost-effective strategies for identifying amyloid-beta (A beta) positivity in patients with cognitive impairment are urgently needed with recent approvals of anti-A beta immunotherapies for Alzheimer's disease (AD). Blood biomarkers can accurately detect AD pathology, but it is unclear whether their incorporation into a full diagnostic workflow can reduce the number of confirmatory cerebrospinal fluid (CSF) or positron emission tomography (PET) tests needed while accurately classifying patients. We evaluated a two-step workflow for determining A beta-PET status in patients with mild cognitive impairment (MCI) from two independent memory clinic-based cohorts (n = 348). A blood-based model including plasma tau protein 217 (p-tau217), age and APOE epsilon 4 status was developed in BioFINDER-1 (area under the curve (AUC) = 89.3%) and validated in BioFINDER-2 (AUC = 94.3%). In step 1, the blood-based model was used to stratify the patients into low, intermediate or high risk of A beta-PET positivity. In step 2, we assumed referral only of intermediate-risk patients to CSF A beta 42/A beta 40 testing, whereas step 1 alone determined A beta-status for low-and high-risk groups. Depending on whether lenient, moderate or stringent thresholds were used in step 1, the two-step workflow overall accuracy for detecting A beta-PET status was 88.2%, 90.5% and 92.0%, respectively, while reducing the number of necessary CSF tests by 85.9%, 72.7% and 61.2%, respectively. In secondary analyses, an adapted version of the BioFINDER-1 model led to successful validation of the two-step workflow with a different plasma p-tau217 immunoassay in patients with cognitive impairment from the TRIAD cohort (n = 84). In conclusion, using a plasma p-tau217-based model for risk stratification of patients with MCI can substantially reduce the need for confirmatory testing while accurately classifying patients, offering a cost-effective strategy to detect AD in memory clinic settings.
  •  
10.
  • Cicognola, C., et al. (författare)
  • Associations of CSF PDGFR & beta; With Aging, Blood-Brain Barrier Damage, Neuroinflammation, and Alzheimer Disease Pathologic Changes
  • 2023
  • Ingår i: NEUROLOGY. - 0028-3878. ; 101:1, s. E30-E39
  • Tidskriftsartikel (refereegranskat)abstract
    • Background and ObjectivesInjured pericytes in the neurovascular unit release platelet-derived growth factor & beta; (PDGFR & beta;) into the CSF. However, it is not clear how pericyte injury contributes to Alzheimer disease (AD)-related changes and blood-brain barrier (BBB) damage. We aimed to test whether CSF PDGFR & beta; was associated with different AD-associated and age-associated pathologic changes leading to dementia.MethodsPDGFR & beta; was measured in the CSF of 771 participants with cognitively unimpaired (CU, n = 408), mild cognitive impairment (MCI, n = 175), and dementia (n = 188) from the Swedish BioFINDER-2 cohort. We then checked association with & beta;-amyloid (A & beta;)-PET and tau-PET standardized uptake value ratio, APOE & epsilon;4 genotype and MRI measurements of cortical thickness, white matter lesions (WMLs), and cerebral blood flow. We also analyzed the role of CSF PDGFR & beta; in the relationship between aging, BBB dysfunction (measured by CSF/plasma albumin ratio, QAlb), and neuroinflammation (i.e., CSF levels of YKL-40 and glial fibrillary acidic protein [GFAP], preferentially expressed in reactive astrocytes).ResultsThe cohort had a mean age of 67 years (CU = 62.8, MCI = 69.9, dementia = 70.4), and 50.1% were male (CU = 46.6%, MCI = 53.7%, dementia = 54.3%). Higher CSF PDGFR & beta; concentrations were related to higher age (b = 19.1, & beta; = 0.5, 95% CI 16-22.2, p < 0.001), increased CSF neuroinflammatory markers of glial activation YKL-40 (b = 3.4, & beta; = 0.5, 95% CI 2.8-3.9, p < 0.001), GFAP (b = 27.4, & beta; = 0.4, 95% CI 20.9-33.9, p < 0.001), and worse BBB integrity measured by QAlb (b = 37.4, & beta; = 0.2, 95% CI 24.9-49.9, p < 0.001). Age was also associated with worse BBB integrity, and this was partly mediated by PDGFR & beta; and neuroinflammatory markers (16%-33% of total effect). However, PDGFR & beta; showed no associations with APOE & epsilon;4 genotype, PET imaging of A & beta; and tau pathology, or MRI measures of brain atrophy and WMLs (p > 0.05).DiscussionIn summary, pericyte damage, reflected by CSF PDGFR & beta;, may be involved in age-related BBB disruption together with neuroinflammation, but is not related to Alzheimer-related pathologic changes.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 21

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy