SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Straile Dietmar) "

Sökning: WFRF:(Straile Dietmar)

  • Resultat 1-10 av 18
  • [1]2Nästa
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Adrian, Rita, et al. (författare)
  • Lakes as sentinels of climate change
  • 2009
  • Ingår i: Limnology and Oceanography. - : Association for the Sciences of Limnology and Oceanography (ASLO). - 0024-3590 .- 1939-5590. ; 54:6(2), s. 2283-2297
  • Tidskriftsartikel (refereegranskat)abstract
    • While there is a general sense that lakes can act as sentinels of climate change, their efficacy has not been thoroughly analyzed. We identified the key response variables within a lake that act as indicators of the effects of climate change on both the lake and the catchment. These variables reflect a wide range of physical, chemical, and biological responses to climate. However, the efficacy of the different indicators is affected by regional response to climate change, characteristics of the catchment, and lake mixing regimes. Thus, particular indicators or combinations of indicators are more effective for different lake types and geographic regions. The extraction of climate signals can be further complicated by the influence of other environmental changes, such as eutrophication or acidification, and the equivalent reverse phenomena, in addition to other land-use influences. In many cases, however, confounding factors can be addressed through analytical tools such as detrending or filtering. Lakes are effective sentinels for climate change because they are sensitive to climate, respond rapidly to change, and integrate information about changes in the catchment.
  •  
2.
  • Blenckner, Thorsten, et al. (författare)
  • Large-scale climatic signatures in lakes across Europe : A meta-analysis
  • 2007
  • Ingår i: Global Change Biology. - 1354-1013 .- 1365-2486. ; 13:7, s. 1314-1326
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent studies have highlighted the impact of the winter North Atlantic Oscillation (NAO) on water temperature, ice conditions, and spring plankton phenology in specific lakes and regions in Europe. Here, we use meta-analysis techniques to test whether 18 lakes in northern, western, and central Europe respond coherently to winter climate forcing, and to assess the persistence of the winter climate signal in physical, chemical, and biological variables during the year. A meta-analysis approach was chosen because we wished to emphasize the overall coherence pattern rather than individual lake responses. A particular strength of our approach is that time-series from each of the 18 lakes were subjected to the same robust statistical analysis covering the same 23-year period. Although the strongest overall coherence in response to the winter NAO was exhibited by lake water temperatures, a strong, coherent response was also exhibited by concentrations of soluble reactive phosphorus and soluble reactive silicate, most likely as a result of the coherent response exhibited by the spring phytoplankton bloom. Lake nitrate concentrations showed significant coherence in winter. With the exception of the cyanobacterial biomass in summer, phytoplankton biomass in all seasons was unrelated to the winter NAO. A strong coherence in the abundance of daphnids during spring can most likely be attributed to coherence in daphnid phenology. A strong coherence in the summer abundance of the cyclopoid copepods may have been related to a coherent change in their emergence from resting stages. We discuss the complex nature of the potential mechanisms that drive the observed changes.
  •  
3.
  • Doubek, Jonathan P., et al. (författare)
  • The extent and variability of storm-induced temperature changes in lakes measured with long-term and high-frequency data
  • 2021
  • Ingår i: Limnology and Oceanography. - : WILEY. - 0024-3590 .- 1939-5590. ; 66:5, s. 1979-1992
  • Tidskriftsartikel (refereegranskat)abstract
    • The intensity and frequency of storms are projected to increase in many regions of the world because of climate change. Storms can alter environmental conditions in many ecosystems. In lakes and reservoirs, storms can reduce epilimnetic temperatures from wind-induced mixing with colder hypolimnetic waters, direct precipitation to the lake's surface, and watershed runoff. We analyzed 18 long-term and high-frequency lake datasets from 11 countries to assess the magnitude of wind- vs. rainstorm-induced changes in epilimnetic temperature. We found small day-to-day epilimnetic temperature decreases in response to strong wind and heavy rain during stratified conditions. Day-to-day epilimnetic temperature decreased, on average, by 0.28 degrees C during the strongest windstorms (storm mean daily wind speed among lakes: 6.7 +/- 2.7 m s(-1), 1 SD) and by 0.15 degrees C after the heaviest rainstorms (storm mean daily rainfall: 21.3 +/- 9.0 mm). The largest decreases in epilimnetic temperature were observed >= 2 d after sustained strong wind or heavy rain (top 5(th) percentile of wind and rain events for each lake) in shallow and medium-depth lakes. The smallest decreases occurred in deep lakes. Epilimnetic temperature change from windstorms, but not rainstorms, was negatively correlated with maximum lake depth. However, even the largest storm-induced mean epilimnetic temperature decreases were typically <2 degrees C. Day-to-day temperature change, in the absence of storms, often exceeded storm-induced temperature changes. Because storm-induced temperature changes to lake surface waters were minimal, changes in other limnological variables (e.g., nutrient concentrations or light) from storms may have larger impacts on biological communities than temperature changes.
  •  
4.
  • Gronchi, Enzo, et al. (författare)
  • Local and continental-scale controls of the onset of spring phytoplankton blooms: Conclusions from a proxy-based model
  • 2021
  • Ingår i: Global Change Biology. - : John Wiley & Sons. - 1354-1013 .- 1365-2486. ; 27:9, s. 1976-1990
  • Tidskriftsartikel (refereegranskat)abstract
    • A key phenological event in the annual cycle of many pelagic ecosystems is the onset of the spring algal bloom (OAB). Descriptions of the factors controlling the OAB in temperate to polar lakes have been limited to isolated studies of single systems and conceptual models. Here we present a validated modelling approach that, for the first time, enables a quantitative prediction of the OAB and a systematic assessment of the processes controlling its timing on a continental scale. We used a weather-driven, one-dimensional lake model to simulate the seasonal dynamics of the underwater light climate in 16 lake types characterized by the factorial combination of four lake depths with four levels of water transparency. We did so at 1962 locations across Western Europe and over 31 years (1979–2009). Assuming that phytoplankton production is light-limited in winter, we identified four patterns of OAB control across lake types and climate zones. OAB timing is controlled by (i) the timing of ice-off in ice-covered clear or shallow lakes, (ii) the onset of thermal stratification in sufficiently deep and turbid lakes and (iii) the seasonal increase in incident radiation in all other lakes, except for (iv) ice-free, shallow and clear lakes in the south, where phytoplankton is not light-limited. The model predicts that OAB timing should respond to two pervasive environmental changes, global warming and browning, in opposite ways. OAB timing should be highly sensitive to warming in lakes where it is controlled by either ice-off or the onset of stratification, but resilient to warming in lakes where it is controlled by incident radiation. Conversely, OAB timing should be most sensitive to browning where it is controlled by incident radiation, but resilient to browning where it is controlled by ice-off or the onset of stratification. Available lake data are consistent with our findings.
  •  
5.
  • Jenny, Jean Philippe, et al. (författare)
  • Scientists’ Warning to Humanity: Rapid degradation of the world's large lakes
  • 2020
  • Ingår i: Journal of Great Lakes Research. - : Elsevier BV. - 0380-1330. ; 46:4, s. 686-702
  • Forskningsöversikt (refereegranskat)abstract
    • © 2020 The Authors Large lakes of the world are habitats for diverse species, including endemic taxa, and are valuable resources that provide humanity with many ecosystem services. They are also sentinels of global and local change, and recent studies in limnology and paleolimnology have demonstrated disturbing evidence of their collective degradation in terms of depletion of resources (water and food), rapid warming and loss of ice, destruction of habitats and ecosystems, loss of species, and accelerating pollution. Large lakes are particularly exposed to anthropogenic and climatic stressors. The Second Warning to Humanity provides a framework to assess the dangers now threatening the world's large lake ecosystems and to evaluate pathways of sustainable development that are more respectful of their ongoing provision of services. Here we review current and emerging threats to the large lakes of the world, including iconic examples of lake management failures and successes, from which we identify priorities and approaches for future conservation efforts. The review underscores the extent of lake resource degradation, which is a result of cumulative perturbation through time by long-term human impacts combined with other emerging stressors. Decades of degradation of large lakes have resulted in major challenges for restoration and management and a legacy of ecological and economic costs for future generations. Large lakes will require more intense conservation efforts in a warmer, increasingly populated world to achieve sustainable, high-quality waters. This Warning to Humanity is also an opportunity to highlight the value of a long-term lake observatory network to monitor and report on environmental changes in large lake ecosystems.
  •  
6.
  • Knoll, Lesley B., et al. (författare)
  • Consequences of lake and river ice loss on cultural ecosystem services
  • 2019
  • Ingår i: Limnology and Oceanography Letters. - : WILEY. - 2378-2242. ; 4:5, s. 119-131
  • Tidskriftsartikel (refereegranskat)abstract
    • People extensively use lakes and rivers covered by seasonal ice. Although ice cover duration has been declining over the past 150 years for Northern Hemisphere freshwaters, we know relatively little about how ice loss directly affects humans. Here, we synthesize the cultural ecosystem services (i.e., services that provide intangible or nonmaterial benefits) and associated benefits supported by inland ice. We also provide, for the first time, empirical examples that give quantitative evidence for a winter warming effect on a wide range of ice-related cultural ecosystem services and benefits. We show that in recent decades, warmer air temperatures delayed the opening date of winter ice roads and led to cancellations of spiritual ceremonies, outdoor ice skating races, and ice fishing tournaments. Additionally, our synthesis effort suggests unexploited data sets that allow for the use of integrative approaches to evaluate the interplay between inland ice loss and society.
  •  
7.
  • Kraemer, Benjamin M., et al. (författare)
  • Climate change drives widespread shifts in lake thermal habitat
  • 2021
  • Ingår i: Nature Climate Change. - 1758-678X .- 1758-6798. ; 11:6, s. 521-529
  • Tidskriftsartikel (refereegranskat)abstract
    • Lake surfaces are warming worldwide, raising concerns about lake organism responses to thermal habitat changes. Species may cope with temperature increases by shifting their seasonality or their depth to track suitable thermal habitats, but these responses may be constrained by ecological interactions, life histories or limiting resources. Here we use 32 million temperature measurements from 139 lakes to quantify thermal habitat change (percentage of non-overlap) and assess how this change is exacerbated by potential habitat constraints. Long-term temperature change resulted in an average 6.2% non-overlap between thermal habitats in baseline (1978-1995) and recent (1996-2013) time periods, with non-overlap increasing to 19.4% on average when habitats were restricted by season and depth. Tropical lakes exhibited substantially higher thermal non-overlap compared with lakes at other latitudes. Lakes with high thermal habitat change coincided with those having numerous endemic species, suggesting that conservation actions should consider thermal habitat change to preserve lake biodiversity. Using measurements from 139 global lakes, the authors demonstrate how long-term thermal habitat change in lakes is exacerbated by species' seasonal and depth-related constraints. They further reveal higher change in tropical lakes, and those with high biodiversity and endemism.
  •  
8.
  •  
9.
  • Mantzouki, Evanthia, et al. (författare)
  • Temperature Effects Explain Continental Scale Distribution of Cyanobacterial Toxins
  • 2018
  • Ingår i: Toxins. - : MDPI. - 2072-6651 .- 2072-6651. ; 10:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Insight into how environmental change determines the production and distribution of cyanobacterial toxins is necessary for risk assessment. Management guidelines currently focus on hepatotoxins (microcystins). Increasing attention is given to other classes, such as neurotoxins (e.g., anatoxin-a) and cytotoxins (e.g., cylindrospermopsin) due to their potency. Most studies examine the relationship between individual toxin variants and environmental factors, such as nutrients, temperature and light. In summer 2015, we collected samples across Europe to investigate the effect of nutrient and temperature gradients on the variability of toxin production at a continental scale. Direct and indirect effects of temperature were the main drivers of the spatial distribution in the toxins produced by the cyanobacterial community, the toxin concentrations and toxin quota. Generalized linear models showed that a Toxin Diversity Index (TDI) increased with latitude, while it decreased with water stability. Increases in TDI were explained through a significant increase in toxin variants such as MC-YR, anatoxin and cylindrospermopsin, accompanied by a decreasing presence of MC-LR. While global warming continues, the direct and indirect effects of increased lake temperatures will drive changes in the distribution of cyanobacterial toxins in Europe, potentially promoting selection of a few highly toxic species or strains.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 18
  • [1]2Nästa
Typ av publikation
tidskriftsartikel (14)
bokkapitel (2)
forskningsöversikt (2)
Typ av innehåll
refereegranskat (16)
övrigt vetenskapligt (2)
Författare/redaktör
Straile, Dietmar (18)
Weyhenmeyer, Gesa A. (13)
Adrian, Rita (12)
Anneville, Orlane (9)
Salmaso, Nico (9)
Rusak, James A. (7)
visa fler...
Verburg, Piet (7)
O`Reilly, Catherine ... (6)
Arvola, Lauri (6)
Nõges, Peeter (6)
Nõges, Tiina (6)
Dokulil, Martin T. (5)
Rimmer, Alon (5)
Knoll, Lesley B. (5)
Sharma, Sapna (5)
Thiery, Wim (5)
Higgins, Scott N. (5)
Kraemer, Benjamin M. (5)
Hessen, Dag O. (4)
Livingstone, David M ... (4)
Sommaruga, Ruben (4)
Blenckner, Thorsten (4)
Williamson, Craig E. (4)
Schindler, Daniel E. (4)
Teubner, Katrin (4)
Colom-Montero, Willi ... (4)
Gaiser, Evelyn E. (4)
Silow, Eugene A. (4)
De Eyto, Elvira (3)
Pierson, Don (3)
Paterson, Andrew M. (3)
Schmid, Martin (3)
Woolway, R. Iestyn (3)
TImofeyev, Maxim A. (3)
George, Glen (3)
Jennings, Eleanor (3)
Grossart, Hans-Peter (3)
Jankowski, Thomas (3)
Flaim, Giovanna (3)
Hamilton, David P (3)
MacIntyre, Sally (3)
Leavitt, Peter R. (3)
Urrutia-Cordero, Pab ... (3)
Maberly, Stephen C. (3)
Dur, Gael (3)
Girdner, Scott F. (3)
Rudstam, Lars G. (3)
Sadro, Steven (3)
Lepori, Fabio (3)
Pilla, Rachel M. (3)
visa färre...
Lärosäte
Uppsala universitet (17)
Umeå universitet (3)
Göteborgs universitet (1)
Stockholms universitet (1)
Lunds universitet (1)
Sveriges Lantbruksuniversitet (1)
Språk
Engelska (18)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (18)
Lantbruksvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy