SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Strand Sven Erik) ;lar1:(gu)"

Sökning: WFRF:(Strand Sven Erik) > Göteborgs universitet

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Alattar, Abdul Ghani, et al. (författare)
  • Recombinant alpha(1)-Microglobulin (rA1M) Protects against Hematopoietic and Renal Toxicity, Alone and in Combination with Amino Acids, in a Lu-177-DOTATATE Mouse Radiation Model
  • 2023
  • Ingår i: Biomolecules. - 2218-273X. ; 13:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Lu-177-DOTATATE peptide receptor radionuclide therapy (PRRT) is used clinically to treat metastasized or unresectable neuroendocrine tumors (NETs). Although Lu-177-DOTATATE is mostly well tolerated in patients, bone marrow suppression and long-term renal toxicity are still side effects that should be considered. Amino acids are often used to minimize renal radiotoxicity, however, they are associated with nausea and vomiting in patients. alpha (1)-microglobulin (A1M) is an antioxidant with heme- and radical-scavenging abilities. A recombinant form (rA1M) has previously been shown to be renoprotective in preclinical models, including in PRRT-induced kidney damage. Here, we further investigated rA1M's renal protective effect in a mouse Lu-177-DOTATATE model in terms of administration route and dosing regimen and as a combined therapy with amino acids (Vamin). Moreover, we investigated the protective effect of rA1M on peripheral blood and bone marrow cells, as well as circulatory biomarkers. Intravenous (i.v.) administration of rA1M reduced albuminuria levels and circulatory levels of the oxidative stress-related protein fibroblast growth factor-21 (FGF-21). Dual injections of rA1M (i.e., at 0 and 24 h post-Lu-177-DOTATATE administration) preserved bone marrow cellularity and peripheral blood reticulocytes. Administration of Vamin, alone or in combination with rA1M, did not show any protection of bone marrow cellularity or peripheral reticulocytes. In conclusion, this study suggests that rA1M, administered i.v. for two consecutive days in conjunction with Lu-177-DOTATATE, may reduce hematopoietic and kidney toxicity during PRRT with Lu-177-DOTATATE.
  •  
2.
  • Kristiansson, Amanda, et al. (författare)
  • Protection of Kidney Function with Human Antioxidation Protein α 1 -Microglobulin in a Mouse 177 Lu-DOTATATE Radiation Therapy Model
  • 2019
  • Ingår i: Antioxidants and Redox Signaling. - : Mary Ann Liebert Inc. - 1523-0864 .- 1557-7716. ; 30:14, s. 1746-1759
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims: Peptide receptor radionuclide therapy (PRRT) is in clinical use today to treat metastatic neuroendocrine tumors. Infused, radiolabeled, somatostatin analog peptides target tumors that are killed by irradiation damage. The peptides, however, are also retained in kidneys due to glomerular filtration, and the administered doses must be limited to avoid kidney damage. The human radical scavenger and antioxidant, α 1 -microglobulin (A1M), has previously been shown to protect bystander tissue against irradiation damage and has pharmacokinetic and biodistribution properties similar to somatostatin analogs. In this study, we have investigated if A1M can be used as a renal protective agent in PRRT. Results: We describe nephroprotective effects of human recombinant A1M on the short- and long-term renal damage observed following lutetium 177 ( 177 Lu)-DOTATATE (150 MBq) exposure in BALB/c mice. After 1, 4, and 8 days (short term), 177 Lu-DOTATATE injections resulted in increased formation of DNA double-strand breaks in the renal cortex, upregulated expression of apoptosis and stress response-related genes, and proteinuria (albumin in urine), all of which were significantly suppressed by coadministration of A1M (7 mg/kg). After 6, 12, and 24 weeks (long term), 177 Lu-DOTATATE injections resulted in increased animal death, kidney lesions, glomerular loss, upregulation of stress genes, proteinuria, and plasma markers of reduced kidney function, all of which were suppressed by coadministration of A1M. Innovation and Conclusion: This study demonstrates that A1M effectively inhibits radiation-induced renal damage. The findings suggest that A1M may be used as a radioprotector during clinical PRRT, potentially facilitating improved tumor control and enabling more patients to receive treatment. © Amanda Kristiansson et al. 2018; Published by Mary Ann Liebert, Inc.
  •  
3.
  • Nilsson, Jenny, et al. (författare)
  • Cancer Cell Radiobiological Studies Using In-House-Developed α-Particle Irradiator.
  • 2015
  • Ingår i: Cancer biotherapy & radiopharmaceuticals. - : Mary Ann Liebert Inc. - 1557-8852 .- 1084-9785. ; 30:9, s. 386-94
  • Tidskriftsartikel (refereegranskat)abstract
    • An α-particle irradiator, enabling high-precision irradiation of cells for in vitro studies, has been constructed. The irradiation source was a (241)Am source, on which well inserts containing cancer cells growing in monolayer were placed. The total radioactivity, uniformity, and α-particle spectrum were determined by use of HPGe detector, Gafchromic™ dosimetry film, and PIPS(®) detector measurements, respectively. Monte Carlo simulations were used for dosimetry. Three prostate cancer (LNCaP, DU145, PC3) and three pancreatic cancer (Capan-1, Panc-1, BxPC-3) cell lines were irradiated by α-particles to the absorbed doses 0, 0.5, 1, and 2Gy. For reference, cells were irradiated using (137)Cs to the absorbed doses 0, 1, 2, 4, 6, 8, and 10Gy. Radiation sensitivity was estimated using a tetrazolium salt-based colorimetric assay with absorbance measurements at 450nm. The relative biological effectiveness for α-particles relative to γ-irradiation at 37% cell survival for the LNCaP, DU145, PC3, Capan-1, Panc-1, and BxPC-3 cells was 7.9±1.7, 8.0±0.8, 7.0±1.1, 12.5±1.6, 9.4±0.9, and 6.2±0.7, respectively. The results show the feasibility of constructing a desktop α-particle irradiator as well as indicate that both prostate and pancreatic cancers are good candidates for further studies of α-particle radioimmunotherapy.
  •  
4.
  • Vilhelmsson Timmermand, Oskar, et al. (författare)
  • High resolution digital autoradiographic and dosimetric analysis of heterogeneous radioactivity distribution in xenografted prostate tumors
  • 2016
  • Ingår i: Medical Physics. - : Wiley. - 0094-2405. ; 43:12, s. 6632-6643
  • Tidskriftsartikel (refereegranskat)abstract
    • The first main aim of this study was to illustrate the absorbed dose rate distribution from 177Lu in sections of xenografted prostate cancer (PCa) tumors using high resolution digital autoradiography (DAR) and compare it with hypothetical identical radioactivity distributions of 90Y or 7 MeV alpha-particles. Three dosimetry models based on either dose point kernels or Monte Carlo simulations were used and evaluated. The second and overlapping aim, was to perform DAR imaging and dosimetric analysis of the distribution of radioactivity, and hence the absorbed dose rate, in tumor sections at an early time point after injection during radioimmunotherapy using 177Lu-h11B6, directed against the human kallikrein 2 antigen.
  •  
5.
  • Ytterbrink, Charlotte, et al. (författare)
  • Effects of Recombinant α1-Microglobulin on Early Proteomic Response in Risk Organs after Exposure to 177Lu-Octreotate
  • 2024
  • Ingår i: International Journal of Molecular Sciences. - : MDPI. - 1661-6596 .- 1422-0067. ; 25:13
  • Tidskriftsartikel (refereegranskat)abstract
    • Recombinant alpha(1)-microglobulin (A1M) is proposed as a protector during Lu-177-octreotate treatment of neuroendocrine tumors, which is currently limited by bone marrow and renal toxicity. Co-administration of Lu-177-octreotate and A1M could result in a more effective treatment by protecting healthy tissue, but the radioprotective action of A1M is not fully understood. The aim of this study was to examine the proteomic response of kidneys and bone marrow early after Lu-177-octreotate and/or A1M administration. Mice were injected with Lu-177-octreotate and/or A1M, while control mice received saline or A1M vehicle solution. Bone marrow, kidney medulla, and kidney cortex were sampled after 24 h or 7 d. The differential protein expression was analyzed with tandem mass spectrometry. The dosimetric estimation was based on Lu-177 activity in the kidney. PHLDA3 was the most prominent radiation-responsive protein in kidney tissue. In general, no statistically significant difference in the expression of radiation-related proteins was observed between the irradiated groups. Most canonical pathways were identified in bone marrow from the Lu-177-octreotate+A1M group. Altogether, a tissue-dependent proteomic response followed exposure to Lu-177-octreotate alone or together with A1M. Combining Lu-177-octreotate with A1M did not inhibit the radiation-induced protein expression early after exposure, and late effects should be further studied.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy