SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Strand Sven Erik) ;pers:(Grafström Gustav)"

Search: WFRF:(Strand Sven Erik) > Grafström Gustav

  • Result 1-6 of 6
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Ceberg, Crister, et al. (author)
  • Photon activation therapy of RG2 glioma carrying Fischer rats using stable thallium and monochromatic synchrotron radiation.
  • 2012
  • In: Physics in Medicine and Biology. - : IOP Publishing. - 1361-6560 .- 0031-9155. ; 57:24, s. 8377-8391
  • Journal article (peer-reviewed)abstract
    • 75 RG2 glioma-carrying Fischer rats were treated by photon activation therapy (PAT) with monochromatic synchrotron radiation and stable thallium. Three groups were treated with thallium in combination with radiation at different energy; immediately below and above the thallium K-edge, and at 50 keV. Three control groups were given irradiation only, thallium only, or no treatment at all. For animals receiving thallium in combination with radiation to 15 Gy at 50 keV, the median survival time was 30 days, which was 67% longer than for the untreated controls (p = 0.0020) and 36% longer than for the group treated with radiation alone (not significant). Treatment with thallium and radiation at the higher energy levels were not effective at the given absorbed dose and thallium concentration. In the groups treated at 50 keV and above the K-edge, several animals exhibited extensive and sometimes contra-lateral edema, neuronal death and frank tissue necrosis. No such marked changes were seen in the other groups. The results were discussed with reference to Monte Carlo calculated electron energy spectra and dose enhancement factors.
  •  
2.
  • Evertsson, Maria, et al. (author)
  • Combined Magnetomotive ultrasound, PET/CT, and MR imaging of (68)Ga-labelled superparamagnetic iron oxide nanoparticles in rat sentinel lymph nodes in vivo
  • 2017
  • In: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 7:1
  • Journal article (peer-reviewed)abstract
    • Current methods for intra-surgical guidance to localize metastases at cancer surgery are based on radioactive tracers that cause logistical challenges. We propose the use of a novel ultrasound-based method, magnetomotive ultrasound (MMUS) imaging that employ a nanoparticle-based contrast agent that also may be used for pre-operative PET/MRI imaging. Since MMUS is radiation free, this eliminates the dependence between pre- and intra-operative imaging and the radiation exposure for the surgical staff. This study investigates a hypothetical clinical scenario of pre-operative PET imaging, combined with intra-operative MMUS imaging, implemented in a sentinel lymph node (SLN) rat model. At one-hour post injection of (68)Ga-labelled magnetic nanoparticles, six animals were imaged with combined PET/CT. After two or four days, the same animals were imaged with MMUS. In addition, ex-vivo MRI was used to evaluate the amount of nanoparticles in each single SLN. All SLNs were detectable by PET. Four out of six SLNs could be detected with MMUS, and for these MMUS and MRI measurements were in close agreement. The MRI measurements revealed that the two SLNs undetectable with MMUS contained the lowest nanoparticle concentrations. This study shows that MMUS can complement standard pre-operative imaging by providing bedside real-time images with high spatial resolution.
  •  
3.
  •  
4.
  • Grafström, Gustav, et al. (author)
  • Rat testis as a radiobiological in vivo model for radionuclides.
  • 2006
  • In: Radiation Protection Dosimetry. - : Oxford University Press (OUP). - 1742-3406 .- 0144-8420. ; 118:1, s. 32-42
  • Journal article (peer-reviewed)abstract
    • The radiobiological effect of intracellularly localised radionuclides emitting low energy electrons (Auger electrons) has received much attention. Most in vivo studies reported have been performed in the mouse testis. We have investigated the rat testis as an in vivo radiobiological model, with sperm-head survival, testis weight loss and also alteration in the blood plasma hormone levels of FSH and LH as radiobiological endpoints. Validation of the rat testis model was evaluated by using mean absorbed doses of up to 10 Gy from intratesticularly (i.t.) injected In-111 oxine or local X-ray irradiation. Biokinetics of the i.t. injected radionuclide was analysed by scintillation camera imaging and used in the absorbed dose estimation. By the analysis of the autoradiographs, the activity distribution was revealed. Cell fractionation showed In-111 to be mainly associated with the cell nuclei. External irradiations were monitored by thermoluminescence dosimeters. The sperm-head survival was the most sensitive radiobiological parameter correlated to the mean absorbed dose, with a D-37 of 2.3 Gy for In-111 oxine and 1.3 Gy for X rays. The levels of plasma pituitary gonadal hormones FSH and LH were elevated for absorbed doses > 7.7 Gy. This investigation shows that the radiobiological model based on the rat testis has several advantages compared with the previously commonly used mouse testis model. The model is appropriate for further investigations of basic phenomena such as radiation geometry, intracellular kinetics and heterogeneity, crucial for an understanding of the biological effect of low-energy electrons.
  •  
5.
  • Jonsson, Ann-Charlotte, et al. (author)
  • Cell survival after Auger electron emission from stable intracellular indium exposed to monochromatic synchrotron radiation
  • 1996
  • In: Acta Oncologica. - : Informa UK Limited. - 1651-226X .- 0284-186X. ; 35:7, s. 947-952
  • Journal article (peer-reviewed)abstract
    • The biological effect of Auger electrons emitted from indium in V79 cells was investigated. K-shell vacancies were induced by synchrotron x-rays. Two energies, 100 eV above and below the K-edge of indium, were used. The cell survival for controls was similar to that which has been reported by others, with D37 = 4.4 Gy. Indium-oxine-labelled cells exhibited a survival clearly below that of the controls, D37 = 3.2 Gy, but no significant difference in survival between irradiations above and below the K-edge could be observed. The explanation is, inter alia, that the number of photons interacting with indium atoms incorporated into the cell, is small compared with the number of photons interacting with other atoms in the cell. The toxicity of indium oxine made it impossible to incorporate a sufficient number of indium atoms into the cells to observe a difference in this study. However, monoenergetic irradiation above and below the K-edge, provides a technique for the investigation of basic biological effects of Auger processes.
  •  
6.
  • Tillman, Carl, et al. (author)
  • Survival of mammalian cells exposed to ultrahigh dose rates from a laser-produced plasma x-ray source
  • 1999
  • In: Radiology. - 1527-1315. ; 213:3, s. 860-865
  • Journal article (peer-reviewed)abstract
    • PURPOSE: To determine whether intense laser-produced x rays have an increased radiation hazard. MATERIALS AND METHODS: Mammalian cells were exposed to x rays from a laser-produced plasma that produced ultrahigh peak absorbed dose rates, up to a factor of 10(10) higher than those produced by conventional x rays used in imaging. The cell survival was studied as a function of the absorbed dose. The survival of mammalian cells exposed to high peak absorbed dose rates with laser-produced x rays was compared with the survival of cells exposed to standard absorbed dose rates with conventional x-ray sources. Comparative survival studies were performed by using a conventional x-ray tube and a cobalt 60 source. The absorbed doses in the irradiation field were measured with thermoluminescent dosimeters. RESULTS: Cell survival following irradiation by filtered, laser-produced x rays with a high dose rate was not markedly different from the survival following irradiation by conventional sources. There was, however, a notable difference between the survival after exposure to filtered, laser-produced x rays and the survival after exposure to unfiltered laser-produced x rays. CONCLUSION: Exposure to filtered, laser-produced x rays with a high dose rate does not lead to increased harm to mammalian cells exposed in vitro compared with the harm from exposure to x rays from conventional sources, which indicates that the use of high-power laser facilities for medical imaging is justified
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-6 of 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view