SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Strand Sven Erik) ;pers:(Strand Sven Erik)"

Sökning: WFRF:(Strand Sven Erik) > Strand Sven Erik

  • Resultat 1-10 av 180
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Altai, Mohamed, et al. (författare)
  • 188Re-ZHER2:V2, a promising affibody-based targeting agent against HER2-expressing tumors : preclinical assessment
  • 2014
  • Ingår i: Journal of nuclear medicine : official publication, Society of Nuclear Medicine. - : Society of Nuclear Medicine. - 0161-5505 .- 1535-5667 .- 2159-662X. ; 55:11, s. 8-1842
  • Tidskriftsartikel (refereegranskat)abstract
    • UNLABELLED: Affibody molecules are small (7 kDa) nonimmunoglobulin scaffold proteins with favorable tumor-targeting properties. Studies concerning the influence of chelators on biodistribution of (99m)Tc-labeled Affibody molecules demonstrated that the variant with a C-terminal glycyl-glycyl-glycyl-cysteine peptide-based chelator (designated ZHER2:V2) has the best biodistribution profile in vivo and the lowest renal retention of radioactivity. The aim of this study was to evaluate (188)Re-ZHER2:V2 as a potential candidate for radionuclide therapy of human epidermal growth factor receptor type 2 (HER2)-expressing tumors.METHODS: ZHER2:V2 was labeled with (188)Re using a gluconate-containing kit. Targeting of HER2-overexpressing SKOV-3 ovarian carcinoma xenografts in nude mice was studied for a dosimetry assessment.RESULTS: Binding of (188)Re-ZHER2:V2 to living SKOV-3 cells was demonstrated to be specific, with an affinity of 6.4 ± 0.4 pM. The biodistribution study showed a rapid blood clearance (1.4 ± 0.1 percentage injected activity per gram [%ID/g] at 1 h after injection). The tumor uptake was 14 ± 2, 12 ± 2, 5 ± 2, and 1.8 ± 0.5 %IA/g at 1, 4, 24, and 48 h after injection, respectively. The in vivo targeting of HER2-expressing xenografts was specific. Already at 4 h after injection, tumor uptake exceeded kidney uptake (2.1 ± 0.2 %IA/g). Scintillation-camera imaging showed that tumor xenografts were the only sites with prominent accumulation of radioactivity at 4 h after injection. Based on the biokinetics, a dosimetry evaluation for humans suggests that (188)Re-ZHER2:V2 would provide an absorbed dose to tumor of 79 Gy without exceeding absorbed doses of 23 Gy to kidneys and 2 Gy to bone marrow. This indicates that future human radiotherapy studies may be feasible.CONCLUSION: (188)Re-ZHER2:V2 can deliver high absorbed doses to tumors without exceeding kidney and bone marrow toxicity limits.
  •  
2.
  • af Rosenschöld, Per Munck, et al. (författare)
  • The MCNP Monte Carlo Program
  • 2012. - 2nd
  • Ingår i: Monte Carlo Calculations in Nuclear Medicine : Applications in Diagnostic Imaging - Applications in Diagnostic Imaging. - : Taylor & Francis. - 9781439841099 - 9781439841105 ; , s. 153-172
  • Bokkapitel (refereegranskat)abstract
    • Monte Carlo N-Particle (MCNP) is a Monte Carlo code package allowing coupled neutron, photon, and electron transport calculations. Also, the possibility of performing heavy charged particle transport calculations was recently introduced with the twin MCNPX code package. An arbitrary three-dimensional problem can be formulated through the use of surfaces defining building blocks (“cells” that are assigned density, material, and relevant cross-section tables. The source can be specified as point, surface, or volumes using generic or as a phase/space file.
  •  
3.
  • Ahlstedt, Jonas, et al. (författare)
  • Biodistribution and pharmacokinetics of recombinant α1-microglobulin and its potential use in radioprotection of kidneys.
  • 2015
  • Ingår i: American journal of nuclear medicine and molecular imaging. - 2160-8407. ; 5:4, s. 333-347
  • Tidskriftsartikel (refereegranskat)abstract
    • Peptide-receptor radionuclide therapy (PRRT) is a systemically administrated molecular targeted radiation therapy for treatment of neuroendocrine tumors. Fifteen years of clinical use show that renal toxicity, due to glomerular filtration of the peptides followed by local generation of highly reactive free radicals, is the main side-effect that limits the maximum activity that can be administrated for efficient therapy. α1-microglobulin (A1M) is an endogenous radical scavenger shown to prevent radiation-induced in vitro cell damage and protect non-irradiated surrounding cells. An important feature of A1M is that, following distribution to the blood, it is equilibrated to the extravascular compartments and filtrated in the kidneys. Aiming at developing renal protection against toxic side-effects of PRRT, we have characterized the pharmacokinetics and biodistribution of intravenously (i.v.) injected (125)I- and non-labelled recombinant human A1M and the (111)In- and fluorescence-labelled somatostatin analogue octreotide. Both molecules were predominantly localized to the kidneys, displaying a prevailing distribution in the cortex. A maximum of 76% of the injected A1M and 46% of the injected octreotide were present per gram kidney tissue at 10 to 20 minutes, respectively, after i.v. injection. Immunohistochemistry and fluorescence microscopy revealed a dominating co-existence of the two substances in proximal tubules, with a cellular co-localization in the epithelial cells. Importantly, analysis of kidney extracts displayed an intact, full-length A1M at least up to 60 minutes post-injection (p.i.). In summary, the results show a highly similar pharmacokinetics and biodistribution of A1M and octreotide, thus enabling the use of A1M to protect the kidneys tissue during PRRT.
  •  
4.
  • Elgqvist, Jörgen, et al. (författare)
  • Radiosensitivity of Prostate Cancer Cell Lines for Irradiation from Beta Particle-emitting Radionuclide ¹⁷⁷Lu Compared to Alpha Particles and Gamma Rays
  • 2016
  • Ingår i: Anticancer research. - 1791-7530. ; 36:1, s. 103-109
  • Tidskriftsartikel (refereegranskat)abstract
    • AIM: The purpose of the present study was to investigate the radiosensitivity of the prostate cancer cell lines LNCaP, DU145, and PC3 when irradiated with beta particles emitted from (177)Lu, and to compare the effect with irradiation using alpha particles or gamma rays.MATERIALS AND METHODS: Cells were irradiated with beta particles emitted from (177)Lu, alpha particles from (241)Am, or gamma rays from (137)Cs. A non-specific polyclonal antibody was labeled with (177)Lu and used to irradiate cells in suspension with beta particles. A previously described in-house developed alpha-particle irradiator based on a (241)Am source was used to irradiate cells with alpha particles. External gamma-ray irradiation was achieved using a standard (137)Cs irradiator. Cells were irradiated to absorbed doses equal to 0, 0.5, 1, 2, 4, 6, 8, or 10 Gy. The absorbed doses were calculated as mean absorbed doses. For evaluation of cell survival, the tetrazolium-based WST-1 assay was used. After irradiation, WST-1 was added to the cell solutions, incubated, and then measured for level of absorbance at 450 nm, indicating the live and viable cells.RESULTS: LNCaP, DU145, and PC3 cell lines all had similar patterns of survival for the different radiation types. No significant difference in surviving fractions were observed between cells treated with beta-particle and gamma-ray irradiation, represented for example by the surviving fraction values (mean±SD) at 2, 6, and 10 Gy (SF2, SF6, and SF10) for DU145 after beta-particle irradiation: 0.700±0.090, 0.186±0.050 and 0.056±0.010, respectively. A strong radiosensitivity to alpha particles was observed, with SF2 values of 0.048±0.008, 0.018±0.006 and 0.015±0.005 for LNCaP, DU145, and PC3, respectively.CONCLUSION: The surviving fractions after irradiation using beta particles or gamma rays did not differ significantly at the absorbed dose levels and dose rates used. Irradiation using alpha particles led to a high level of cell killing. The results show that the beta-particle emitter (177)Lu as well as alpha-particles are both good candidates for radionuclide-therapy applications in the treatment of prostate cancer.
  •  
5.
  • Evans Axelsson, Susan, et al. (författare)
  • Targeting free prostate-specific antigen for in vivo imaging of prostate cancer using a monoclonal antibody specific for unique epitopes accessible on free prostate-specific antigen alone
  • 2012
  • Ingår i: Cancer Biotherapy and Radiopharmaceuticals. - : Mary Ann Liebert Inc. - 1084-9785 .- 1557-8852. ; 27:4, s. 243-251
  • Tidskriftsartikel (refereegranskat)abstract
    • This study investigated the feasibility of targeting the free, unbound forms of prostate-specific antigen (fPSA) for in vivo imaging of prostate adenocarcinomas (PCa), as PSA is produced and secreted at abundance during every clinical stage and grade of PCa, including castration-resistant disease. We injected 125I-labeled monoclonal antibody PSA30 (specific for an epitope uniquely accessible on fPSA alone) intravenously in male nude mice carrying subcutaneous xenografts of LNCaP tumors (n=36). Mice were sacrificed over a time course from 4 hours to 13 days after injecting 125I-labeled PSA30. Tissue uptake of 125I-PSA30 at 48 and 168 hours after intravenous injection was compared with two clinically used positron emission tomography radiopharmaceuticals, 18F-fluoro-deoxy-glucose (18F-FDG) or 18F-choline, in cryosections using Digital AutoRadiography (DAR) and also compared with immunohistochemical staining of PSA and histopathology. On DAR, the areas with high 125I-PSA30 uptake corresponded mainly to morphologically intact and PSA-producing LNCaP cells, but did not associate with the areas of high uptake of either 18F-FDG or 18F-choline. Biodistribution of 125I-PSA30 measured in dissected organs ex vivo during 4 to 312 hours after intravenous injection demonstrated maximum selective tumor uptake 24–48 hours after antibody injection. Our data showed selective uptake in vivo of a monoclonal antibody highly specific for fPSA in LNCaP cells. Hence, in vivo imaging of fPSA may be feasible with putative usefulness in disseminated PCa.
  •  
6.
  • Kristiansson, Amanda, et al. (författare)
  • 177Lu-PSMA-617 Therapy in Mice, with or without the Antioxidant α1-Microglobulin (A1M), Including Kidney Damage Assessment Using 99mTc-MAG3 Imaging
  • 2021
  • Ingår i: Biomolecules. - : MDPI AG. - 2218-273X. ; 11:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Anti-prostate specific membrane antigen (PSMA) radioligand therapy is promising but not curative in castration resistant prostate cancer. One way to broaden the therapeutic index could be to administer higher doses in combination with radioprotectors, since administered radioactivity is kept low today in order to avoid side-effects from a high absorbed dose to healthy tissue. Here, we investigated the human radical scavenger α1-microglobulin (A1M) together with 177-Lutetium (177Lu) labeled PSMA-617 in preclinical models with respect to therapeutic efficacy and kidney toxicity. Nude mice with subcutaneous LNCaP xenografts were injected with 50 or 100 MBq of [177Lu]Lu-PSMA-617, with or without injections of recombinant A1M (rA1M) (at T = 0 and T = 24 h). Kidney absorbed dose was calculated to 7.36 Gy at 4 days post a 100 MBq injection. Activity distribution was imaged with Single-Photon Emission Computed Tomography (SPECT) at 24 h. Tumor volumes were measured continuously, and kidneys and blood were collected at termination (3-4 days and 3-4 weeks after injections). In a parallel set of experiments, mice were given [177Lu]Lu-PSMA-617 and rA1M as above and dynamic technetium-99m mercaptoacetyltriglycine ([99mTc]Tc-MAG3) SPECT imaging was performed prior to injection, and 3- and 6-months post injection. Blood and urine were continuously sampled. At termination (6 months) the kidneys were resected. Biomarkers of kidney function, expression of stress genes and kidney histopathology were analyzed. [177Lu]Lu-PSMA-617 uptake, in tumors and kidneys, as well as treatment efficacy did not differ between rA1M and vehicle groups. In mice given rA1M, [99mTc]Tc-MAG3 imaging revealed a significantly higher slope of initial uptake at three months compared to mice co-injected with [177Lu]Lu-PSMA-617 and vehicle. Little or no change compared to control was seen in urine albumin, serum/plasma urea levels, RT-qPCR analysis of stress response genes and in the kidney histopathological evaluation. In conclusion, [99mTc]Tc-MAG3 imaging presented itself as a sensitive tool to detect changes in kidney function revealing that administration of rA1M has a potentially positive effect on kidney perfusion and tubular function when combined with [177Lu]Lu-PSMA-617 therapy. Furthermore, we could show that rA1M did not affect anti-PSMA radioligand therapy efficacy.
  •  
7.
  • Kristiansson, Amanda, et al. (författare)
  • Hematological Toxicity in Mice after High Activity Injections of 177Lu-PSMA-617
  • 2022
  • Ingår i: Pharmaceutics. - : MDPI AG. - 1999-4923. ; 14:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Prostate cancer (PC) is one of the most common malignancies affecting men, with poor prognosis after progression to metastatic castration-resistant prostate cancer (mCRPC). Radioligand therapy (RLT) targeting the overexpressed PSMA on PC cells, with, e.g., 177Lu-PSMA-617, has been effective in reducing tumor burden and prolonging survival in mCRPC. However, it is not a curative method with kidney and bone marrow toxicity limiting the activity given to patients. Previous preclinical models have reported transient hematotoxicity for up to 120 MBq. This activity may still be too low to investigate the effect on renal function since it corresponds to an absorbed dose below 10 Gy, whereas the kidneys in a clinical setting usually receive an absorbed dose more than double. Here we investigated the hematotoxicity and recovery after administered activities of 120, 160, and 200 MBq in a 177Lu-PSMA-617 BALB/cAnNRj mouse model. The animals had an initial drop in white blood cells (WBC) starting 4 days post injection, which recovered after 21 days. The effect on red blood cells (RBC) and platelets was detected later; 17 days post-injection levels decreased compared to the control group. The reduction was restored again 32 days post injection. No correlation between injected activity and hematotoxicity was found. Our results suggest that activities up to 200 MBq of 177Lu-PSMA-617 give transient hematotoxicity from which animals recover within a month and no radiation-related deaths. Injecting these high activities could allow animal studies with increased clinical relevance when studying renal toxicity in animal models.
  •  
8.
  • Larsson, Erik, et al. (författare)
  • A Small-Scale Anatomic Model for Testicular Radiation Dosimetry for Radionuclides Localized in the Human Testes.
  • 2012
  • Ingår i: Journal of Nuclear Medicine. - : Society of Nuclear Medicine. - 0161-5505 .- 2159-662X. ; 53, s. 72-81
  • Tidskriftsartikel (refereegranskat)abstract
    • The testis is a radiosensitive tissue. It contains a large number of lobules, which in turn are composed of convoluted seminiferous tubules. The epithelium inside each tubule consists of a complex mosaic of supporting cells and germ cells of different sizes and degrees of maturation. These cells are known to have diverse sensitivity to radiation, those with the highest sensitivity being the spermatogonia, which form part of the basal cell layer, and those with the lowest sensitivity being the mature sperm cells closest to the lumen of the tubule. For many years, the internal dosimetry community has discussed the need for improvements to bring about more detailed, cell-level testicular dosimetry. This paper presents a small-scale dosimetry model for calculation of S factors for several different source-target configurations within the testicular tissue. METHODS: A model of the testis was designed in which the lobules were approximated by a cross-section of seminiferous tubules arranged in a hexagonal pattern, with interstitial tissue between them. The seminiferous tubules were divided into concentric layers representing spermatogenic development in the seminiferous epithelium. S factors were calculated for electrons, photons, α-particles, and for (18)F, (90)Y, (99m)Tc, (111)In, (125)I, (131)I, (177)Lu, and (211)At using Monte Carlo simulations. RESULTS: For electrons with low energies the range was small, compared with the diameter of the seminiferous tubules, resulting in high energy deposition close to the source, whereas for higher electron energies more uniform energy deposition was seen, as expected. The same trend was seen for low-energy photons, whose mean free paths are small, compared with the diameter of the seminiferous tubules, resulting in high energy deposition close to the source, whereas for higher photon energies the location of the activity in the testis is less important. CONCLUSION: The model presented in this paper is a simplification of the organized chaos that constitutes the structure of the actual testis. However, it provides a relevant, small-scale anatomic model to help us understand the significance of the heterogeneity of radioactivity in this important radiosensitive tissue.
  •  
9.
  •  
10.
  • Larsson, Erik, et al. (författare)
  • Monte Carlo calculations of absorbed doses in tumours using a modified MOBY mouse phantom for pre-clinical dosimetry studies.
  • 2011
  • Ingår i: Acta oncologica (Stockholm, Sweden). - 1651-226X. ; 50:6, s. 973-980
  • Tidskriftsartikel (refereegranskat)abstract
    • Abstract Background. Clinical treatment with radionuclides is usually preceded by biokinetic and dosimetry studies in small animals. Evaluation of the therapeutic efficacy is essential and must rely on accurate dosimetry, which in turn must be based on a realistic geometrical model that properly describes the transport of radiation. It is also important to include the source distribution in the dosimetry calculations. Tumours are often implanted subcutaneously in animals, constituting an important additional source of radiation that often is not considered in the dosimetry models. The aims of this study were to calculate S values of the mouse, and determine the absorbed dose contribution to and from subcutaneous tumours inoculated at four different locations. Methods. The Moby computer program generates a three dimensional (3D) voxel-based phantom. Tumours were modelled as half-spheres on the body surface, and the radius was varied to study different tumour masses. The phantoms were used as input for Monte Carlo simulations of absorbed fractions and S factors with the radiation transport code MCNPX 2.6f. Calculations were performed for monoenergetic photons and electrons, and the radionuclides (125)I, (131)I, (111)In, (177)Lu and (90)Y. Results. Electron energy and tumour size are important for both self- and cross-doses. If the activity is non-uniformly distributed within the body, the position of the tumour must be considered in order to calculate the tumour absorbed dose accurately. If the uptake in the tumour is high compared with that in adjacent organs the absorbed dose contribution to organs from the tumour cannot be neglected. Conclusions. In order to perform accurate tumour dosimetry in mouse models it is necessary to take the additional contribution from the activity distribution within the body of the mouse into account. This may be of significance in the interpretation of radiobiological tumour response in pre-clinical studies.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 180
Typ av publikation
tidskriftsartikel (149)
konferensbidrag (14)
bokkapitel (9)
forskningsöversikt (5)
samlingsverk (redaktörskap) (1)
bok (1)
visa fler...
doktorsavhandling (1)
visa färre...
Typ av innehåll
refereegranskat (171)
övrigt vetenskapligt/konstnärligt (9)
Författare/redaktör
Ljungberg, Michael (54)
Tennvall, Jan (41)
Jönsson, Bo-Anders (28)
Ohlsson, Tomas G (22)
Sjögreen Gleisner, K ... (17)
visa fler...
Wingårdh, Karin (17)
Lindén, Ola (15)
Sjögren, Hans Olov (14)
Larsson, Erik (12)
Örbom, Anders (11)
Tran, Thuy (11)
Ulmert, David (10)
Hindorf, Cecilia (10)
Norrgren, Kristina (9)
Evans Axelsson, Susa ... (9)
Lilja, Hans (8)
Strand, Joanna (8)
Ahlstedt, Jonas (7)
Åkerström, Bo (7)
Erlandsson, Kjell (7)
Thorek, Daniel L.J. (6)
Sandell, Anders (6)
Salford, Leif (6)
Bjartell, Anders (6)
Larson, Steven M. (6)
Thörne, Johan (6)
Grafström, Gustav (6)
Altai, Mohamed (5)
Ceberg, Crister (5)
King, Michael A (5)
Holmqvist, Bo (5)
Gram, Magnus (5)
Tran, Thuy A. (5)
Kristiansson, Amanda (5)
Fredriksson, Sarah (5)
Axelsson, Johan (5)
Ingvar, Christian (5)
Cavallin-Ståhl, Eva (5)
Norgren, Lars (4)
Sjöberg, Trygve (4)
Ståhlberg, Freddy (4)
Knutsson, Linda (4)
Jansson, Tomas (4)
Kjellman, Pontus (4)
Palmer, John (4)
Lindgren, Lars (4)
Arvidsson, Dag (4)
Qvarfordt, Peter (4)
McDevitt, Michael R. (4)
visa färre...
Lärosäte
Lunds universitet (178)
Karolinska Institutet (5)
Göteborgs universitet (4)
Uppsala universitet (4)
Kungliga Tekniska Högskolan (1)
Malmö universitet (1)
Språk
Engelska (179)
Svenska (1)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (169)
Naturvetenskap (21)
Teknik (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy