SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Styring S) ;hsvcat:1"

Sökning: WFRF:(Styring S) > Naturvetenskap

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Harlang, Tobias C. B., et al. (författare)
  • Iron sensitizer converts light to electrons with 92% yield
  • 2015
  • Ingår i: Nature Chemistry. - 1755-4330 .- 1755-4349. ; 7:11, s. 883-889
  • Tidskriftsartikel (refereegranskat)abstract
    • Solar energy conversion in photovoltaics or photocatalysis involves light harvesting, or sensitization, of a semiconductor or catalyst as a first step. Rare elements are frequently used for this purpose, but they are obviously not ideal for large-scale implementation. Great efforts have been made to replace the widely used ruthenium with more abundant analogues like iron, but without much success due to the very short-lived excited states of the resulting iron complexes. Here, we describe the development of an iron-nitrogen-heterocyclic-carbene sensitizer with an excited-state lifetime that is nearly a thousand-fold longer than that of traditional iron polypyridyl complexes. By the use of electron paramagnetic resonance, transient absorption spectroscopy, transient terahertz spectroscopy and quantum chemical calculations, we show that the iron complex generates photoelectrons in the conduction band of titanium dioxide with a quantum yield of 92% from the 3MLCT (metal-to-ligand charge transfer) state. These results open up possibilities to develop solar energy-converting materials based on abundant elements.
  •  
2.
  • Chábera, Pavel, et al. (författare)
  • A low-spin Fe(iii) complex with 100-ps ligand-to-metal charge transfer photoluminescence
  • 2017
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 543:7647, s. 695-699
  • Tidskriftsartikel (refereegranskat)abstract
    • Transition-metal complexes are used as photosensitizers1, in light-emitting diodes, for biosensing and in photocatalysis2. A key feature in these applications is excitation from the ground state to a charge-transfer state3,4; the long charge-transfer-state lifetimes typical for complexes of ruthenium5 and other precious metals are often essential to ensure high performance. There is much interest in replacing these scarce elements with Earth-abundant metals, with iron6 and copper7 being particularly attractive owing to their low cost and non-toxicity. But despite the exploration of innovative molecular designs6,8,9,10, it remains a formidable scientific challenge11 to access Earth-abundant transition-metal complexes with long-lived charge-transfer excited states. No known iron complexes are considered12 photoluminescent at room temperature, and their rapid excited-state deactivation precludes their use as photosensitizers13,14,15. Here we present the iron complex [Fe(btz)3]3+ (where btz is 3,3′-dimethyl-1,1′-bis(p-tolyl)-4,4′-bis(1,2,3-triazol-5-ylidene)), and show that the superior σ-donor and π-acceptor electron properties of the ligand stabilize the excited state sufficiently to realize a long charge-transfer lifetime of 100 picoseconds (ps) and room-temperature photoluminescence. This species is a low-spin Fe(iii) d5 complex, and emission occurs from a long-lived doublet ligand-to-metal charge-transfer (2LMCT) state that is rarely seen for transition-metal complexes4,16,17. The absence of intersystem crossing, which often gives rise to large excited-state energy losses in transition-metal complexes, enables the observation of spin-allowed emission directly to the ground state and could be exploited as an increased driving force in photochemical reactions on surfaces. These findings suggest that appropriate design strategies can deliver new iron-based materials for use as light emitters and photosensitizers.
  •  
3.
  • Daniel, Quentin, et al. (författare)
  • Rearranging from 6-to 7-coordination initiates the catalytic activity : An EPR study on a Ru-bda water oxidation catalyst
  • 2017
  • Ingår i: Coordination chemistry reviews. - : Elsevier. - 0010-8545 .- 1873-3840. ; 346, s. 206-215
  • Tidskriftsartikel (refereegranskat)abstract
    • The coordination of a substrate water molecule on a metal centered catalyst for water oxidation is a crucial step involving the reorganization of the ligand sphere. This process can occur by substituting a coordinated ligand with a water molecule or via a direct coordination of water onto an open site. In 2009, we reported an efficient ruthenium-based molecular catalyst, Ru-bda, for water oxidation. Despite the impressive improvement in catalytic activity of this type of catalyst over the past years, a lack of understanding of the water coordination still remains. Herein, we report our EPR and DFT studies on Ru-bda (triethylammonium 3-pyridine sulfonate)(2) (1) at its Ru-III oxidation state, which is the initial state in the catalytic cycle for the O-O bond formation. Our investigation suggests that at this III-state, there is already a rearrangement in the ligand sphere where the coordination of a water molecule at the 7th position (open site) takes place under acidic conditions (pH = 1.0) to form a rare 7-coordinated Ru-III species.
  •  
4.
  •  
5.
  • Berg, K. E., et al. (författare)
  • Covalently linked ruthenium(II)-manganese(II) complexes : Distance dependence of quenching and electron transfer
  • 2001
  • Ingår i: European Journal of Inorganic Chemistry. - 1434-1948 .- 1099-1948. ; 2001:4, s. 1019-1029
  • Tidskriftsartikel (refereegranskat)abstract
    • Continuing our development of artificial models for photosystem II in green plants, a series of compounds have been prepared in which a RU(bpy)(3)(2+) photosensitizer is covalently Linked to a manganese(II) electron donor. In addition to a trispicolylamine Ligand, two other manganese Ligands, dipicolylamine and aminodiacetic acid, have been introduced in order to study Ligands that are appropriate for the construction of manganese dimers with open coordination sites for the binding of water. Coordination equilibria of the manganese ions were monitored by EPR. The interactions between the ruthenium and manganese moieties were probed by flash photolysis, cyclic voltammetry and steady-state and time-resolved emission measurements. The quenching of the Ru-II excited state by Mn-II was found to be rapid in complexes with short Ru-Mn distances. Nevertheless, each Run species could be photo-oxidized by bimolecular quenching with methylviologen, and the subsequent electron transfer from Mn-II to Ru-III could be monitored.
  •  
6.
  • Danielsson, Ravi, et al. (författare)
  • Dimeric and monomeric organization of photosystem II - Distribution of five distinct complexes in the different domains of the thylakoid membrane
  • 2006
  • Ingår i: Journal of Biological Chemistry. - 1083-351X. ; 281:20, s. 14241-14249
  • Tidskriftsartikel (refereegranskat)abstract
    • The supramolecular organization of photosystem II (PSII) was characterized in distinct domains of the thylakoid membrane, the grana core, the grana margins, the stroma lamellae, and the so-called Y100 fraction. PSII supercomplexes, PSII core dimers, PSII core monomers, PSII core monomers lacking the CP43 subunit, and PSII reaction centers were resolved and quantified by blue native PAGE, SDS-PAGE for the second dimension, and immunoanalysis of the D1 protein. Dimeric PSII (PSII supercomplexes and PSII core dimers) dominate in the core part of the thylakoid granum, whereas the monomeric PSII prevails in the stroma lamellae. Considerable amounts of PSII monomers lacking the CP43 protein and PSII reaction centers (D1-D2-cytochrome b(559) complex) were found in the stroma lamellae. Our quantitative picture of the supramolecular composition of PSII, which is totally different between different domains of the thylakoid membrane, is discussed with respect to the function of PSII in each fraction. Steady state electron transfer, flash-induced fluorescence decay, and EPR analysis revealed that nearly all of the dimeric forms represent oxygen-evolving PSII centers. PSII core monomers were heterogeneous, and a large fraction did not evolve oxygen. PSII monomers without the CP43 protein and PSII reaction centers showed no oxygen-evolving activity.
  •  
7.
  • Hoganson, C W, et al. (författare)
  • A hydrogen-atom abstraction model for the function of Y-Z in photosynthetic oxygen evolution
  • 1995
  • Ingår i: Photosynthesis Research. - 0166-8595. ; 46:1-2, s. 177-184
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent magnetic-resonance work on Y-Z suggests that this species exhibits considerable motional flexibility in its functional site and that its phenol oxygen is not involved in a well-ordered hydrogen-bond interaction (Tang et al., submitted; Tommos et al., in press). Both of these observations are inconsistent with a simple electron-transfer function for this radical in photosynthetic water oxidation. By considering the roles of catalytically active amino acid radicals in other enzymes and recent data on the water-oxidation process in Photosystem II, we rationalize these observations by suggesting that Y-Z functions to abstract hydrogen atoms from aquo- and hydroxy-bound manganese ions in the (Mn)(4) cluster on each S-state transition. The hydrogen-atom abstraction process may occur either by sequential or concerted kinetic pathways. Within this model, the (Mn)(4)/Y-Z center forms a single catalytic center that comprises the Oxygen Evolving Complex in Photosystem II.
  •  
8.
  •  
9.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy