SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sun Kai) ;pers:(Blomgren K)"

Sökning: WFRF:(Sun Kai) > Blomgren K

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Li, Tao, et al. (författare)
  • Overexpression of apoptosis inducing factor aggravates hypoxic-ischemic brain injury in neonatal mice
  • 2020
  • Ingår i: Cell death & disease. - : Springer Science and Business Media LLC. - 2041-4889. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Apoptosis inducing factor (AIF) has been shown to be a major contributor to neuron loss in the immature brain after hypoxia-ischemia (HI). Indeed, mice bearing a hypomorphic mutation causing reduced AIF expression are protected against neonatal HI. To further investigate the possible molecular mechanisms of this neuroprotection, we generated an AIF knock-in mouse by introduction of a latent transgene coding for flagged AIF protein into the Rosa26 locus, followed by its conditional activation by a ubiquitously expressed Cre recombinase. Such AIF transgenic mice overexpress the pro-apoptotic splice variant of AIF (AIF1) at both the mRNA (5.9 times higher) and protein level (2.4 times higher), but not the brain-specific AIF splice-isoform (AIF2). Excessive AIF did not have any apparent effects on the phenotype or physiological functions of the mice. However, brain injury (both gray and white matter) after neonatal HI was exacerbated in mice overexpressing AIF, coupled to enhanced translocation of mitochondrial AIF to the nucleus as well as enhanced caspase-3 activation in some brain regions, as indicated by immunohistochemistry. Altogether, these findings corroborate earlier studies demonstrating that AIF plays a causal role in neonatal HI brain injury.
  •  
2.
  • Sun, Yanyan, et al. (författare)
  • Haploinsufficiency in the mitochondrial protein CHCHD4 reduces brain injury in a mouse model of neonatal hypoxia-ischemia
  • 2017
  • Ingår i: Cell Death & Disease. - : Springer Science and Business Media LLC. - 2041-4889. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • Mitochondria contribute to neonatal hypoxic-ischemic brain injury by releasing potentially toxic proteins into the cytosol. CHCHD4 is a mitochondrial intermembrane space protein that plays a major role in the import of intermembrane proteins and physically interacts with apoptosis-inducing factor (AIF). The purpose of this study was to investigate the impact of CHCHD4 haploinsufficiency on mitochondrial function and brain injury after cerebral hypoxia-ischemia (HI) in neonatal mice. CHCHD4(+/-) and wild-type littermate mouse pups were subjected to unilateral cerebral HI on postnatal day 9. CHCHD4 haploinsufficiency reduced insult-related AIF and superoxide dismutase 2 release from the mitochondria and reduced neuronal cell death. The total brain injury volume was reduced by 21.5% at 3 days and by 31.3% at 4 weeks after HI in CHCHD4(+/-) mice. However, CHCHD4 haploinsufficiency had no influence on mitochondrial biogenesis, fusion, or fission; neural stem cell proliferation; or neural progenitor cell differentiation. There were no significant changes in the expression or distribution of p53 protein or p53 pathway-related genes under physiological conditions or after HI. These results suggest that CHCHD4 haploinsufficiency afforded persistent neuroprotection related to reduced release of mitochondrial intermembrane space proteins. The CHCHD4-dependent import pathway might thus be a potential therapeutic target for preventing or treating neonatal brain injury.
  •  
3.
  • Wang, Yafeng, 1985, et al. (författare)
  • Inhibition of autophagy prevents irradiation-induced neural stem and progenitor cell death in the juvenile mouse brain
  • 2017
  • Ingår i: Cell Death & Disease. - : Springer Science and Business Media LLC. - 2041-4889. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • Radiotherapy is an effective tool in the treatment of malignant brain tumors. However, damage to brain stem and progenitor cells constitutes a major problem and is associated with long-term side effects. Autophagy has been shown to be involved in cell death, and the purpose of this study was to evaluate the effect of autophagy inhibition on neural stem and progenitor cell death in the juvenile brain. Ten-day-old selective Atg7 knockout (KO) mice and wild-type (WT) littermates were subjected to a single 6Gy dose of whole-brain irradiation. Cell death and proliferation as well as microglia activation and inflammation were evaluated in the dentate gyrus of the hippocampus and in the cerebellum at 6 h after irradiation. We found that cell death was reduced in Atg7 KO compared with WT mice at 6 h after irradiation. The number of activated microglia increased significantly in both the dentate gyrus and the cerebellum of WT mice after irradiation, but the increase was lower in the Atg7 KO mice. The levels of proinflammatory cytokines and chemokines decreased, especially in the cerebellum, in the Atg7 KO group. These results suggest that autophagymight be a potential target for preventing radiotherapy-induced neural stem and progenitor cell death and its associated long-term side effects.
  •  
4.
  • Xie, Cuicui, et al. (författare)
  • Neuroprotection by selective neuronal deletion of Atg7 in neonatal brain injury
  • 2016
  • Ingår i: Autophagy. - : Informa UK Limited. - 1554-8627 .- 1554-8635. ; 12:2, s. 410-423
  • Tidskriftsartikel (refereegranskat)abstract
    • Perinatal asphyxia induces neuronal cell death and brain injury, and is often associated with irreversible neurological deficits in children. There is an urgent need to elucidate the neuronal death mechanisms occurring after neonatal hypoxia-ischemia (HI). We here investigated the selective neuronal deletion of the Atg7 (autophagy related 7) gene on neuronal cell death and brain injury in a mouse model of severe neonatal hypoxia-ischemia. Neuronal deletion of Atg7 prevented HI-induced autophagy, resulted in 42% decrease of tissue loss compared to wild-type mice after the insult, and reduced cell death in multiple brain regions, including apoptosis, as shown by decreased caspase-dependent and -independent cell death. Moreover, we investigated the lentiform nucleus of human newborns who died after severe perinatal asphyxia and found increased neuronal autophagy after severe hypoxic-ischemic encephalopathy compared to control uninjured brains, as indicated by the numbers of MAP1LC3B/LC3B (microtubule-associated protein 1 light chain 3)-, LAMP1 (lysosomal-associated membrane protein 1)-, and CTSD (cathepsin D)-positive cells. These findings reveal that selective neuronal deletion of Atg7 is strongly protective against neuronal death and overall brain injury occurring after HI and suggest that inhibition of HI-enhanced autophagy should be considered as a potential therapeutic target for the treatment of human newborns developing severe hypoxic-ischemic encephalopathy.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy