SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sun Qi) ;mspu:(publicationother)"

Sökning: WFRF:(Sun Qi) > Annan publikation

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kang, Zhengzhong, 1990-, et al. (författare)
  • Adsorption and folding of single strand DNA on metal-organic frameworks: a molecular simulation study
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • DNA-MOF nanoparticles based on the loading, release, and conformational change of DNA on MOFs have been frequently explored in gene therapy, drug delivery, and biosensor design. Nevertheless, the mechanism of DNA-MOF interactions, which is a fundamental issue behind these applications, remains largely unclear. Here, we applied molecular simulation methods to study systematically the adsorption and folding of ssDNA with different sequences on ideal and defective UiO-66-NH2 MOFs. We find that the ssDNA prefers to be adsorbed on the surfaces rather than inside the cages due to the size limitation of the cages. It is difficult for the ssDNA to be adsorbed on the ideal MOF surface through van der Waals interactions but it can be stably loaded on the defective MOF surface through electrostatic interactions. The whole process of the ssDNA adsorption onto the defective MOFs includes three stages: fast adsorption, conformational reconfiguration, and lock-down adsorption. The loading state of the ssDNA on UiO-66-NH2 is the coexistence of the adsorbed and dangling nucleotides. The binding of the ssDNA on the MOFs is dominated by the multiple point anchoring of the phosphate groups of the ssDNA on the clusters of UiO-66-NH2. Water layers with complex hydrogen-bond network function as a gate, preventing the ssDNA from approaching to UiO-66-NH2 before adsorption and inhibiting it from leaving UiO-66-NH2 after anchoring. Unlike the circular folding structure in the solution, the adsorbed ssDNA displays a slender conformation or duplex like structure. Our results thus provide a deep understanding of DNA-MOF interactions. 
  •  
2.
  • Rando, Halie M, et al. (författare)
  • Identification and Development of Therapeutics for COVID-19
  • 2021
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • After emerging in China in late 2019, the novel Severe acute respiratory syndrome-like coronavirus 2 (SARS-CoV-2) spread worldwide and as of early 2021, continues to significantly impact most countries. Only a small number of coronaviruses are known to infect humans, and only two are associated with the severe outcomes associated with SARS-CoV-2: Severe acute respiratory syndrome-related coronavirus, a closely related species of SARS-CoV-2 that emerged in 2002, and Middle East respiratory syndrome-related coronavirus, which emerged in 2012. Both of these previous epidemics were controlled fairly rapidly through public health measures, and no vaccines or robust therapeutic interventions were identified. However, previous insights into the immune response to coronaviruses gained during the outbreaks of severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS) have proved beneficial to identifying approaches to the treatment and prophylaxis of novel coronavirus disease 2019 (COVID-19). A number of potential therapeutics against SARS-CoV-2 and the resultant COVID-19 illness were rapidly identified, leading to a large number of clinical trials investigating a variety of possible therapeutic approaches being initiated early on in the pandemic. As a result, a small number of therapeutics have already been authorized by regulatory agencies such as the Food and Drug Administration (FDA) in the United States, and many other therapeutics remain under investigation. Here, we describe a range of approaches for the treatment of COVID-19, along with their proposed mechanisms of action and the current status of clinical investigation into each candidate. The status of these investigations will continue to evolve, and this review will be updated as progress is made.
  •  
3.
  • Rando, Halie M, et al. (författare)
  • Pathogenesis, Symptomatology, and Transmission of SARS-CoV-2 through analysis of Viral Genomics and Structure
  • 2021
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • The novel coronavirus SARS-CoV-2, which emerged in late 2019, has since spread around the world infecting tens of millions of people with coronavirus disease 2019 (COVID-19). While this viral species was unknown prior to January 2020, its similarity to other coronaviruses that infect humans has allowed for rapid insight into the mechanisms that it uses to infect human hosts, as well as the ways in which the human immune system can respond. Here, we contextualize SARS-CoV-2 among other coronaviruses and identify what is known and what can be inferred about its behavior once inside a human host. Because the genomic content of coronaviruses, which specifies the virus's structure, is highly conserved, early genomic analysis provided a significant head start in predicting viral pathogenesis. The pathogenesis of the virus offers insights into symptomatology, transmission, and individual susceptibility. Additionally, prior research into interactions between the human immune system and coronaviruses has identified how these viruses can evade the immune system's protective mechanisms. We also explore systems-level research into the regulatory and proteomic effects of SARS-CoV-2 infection and the immune response. Understanding the structure and behavior of the virus serves to contextualize the many facets of the COVID-19 pandemic and can influence efforts to control the virus and treat the disease.
  •  
4.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy