SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sun Xiao Feng) ;hsvcat:2"

Sökning: WFRF:(Sun Xiao Feng) > Teknik

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Wei, Xiao-Ping, et al. (författare)
  • Investigations on electronic, Fermi surface, Curie temperature and optical properties of Zr2CoAl
  • 2017
  • Ingår i: Journal of Solid State Chemistry. - : ACADEMIC PRESS INC ELSEVIER SCIENCE. - 0022-4596 .- 1095-726X. ; 247, s. 97-104
  • Tidskriftsartikel (refereegranskat)abstract
    • Using full-potential local-orbital minimum-basis along with spin-polarized relativistic Korringa-Kohn-Rostoker methods, we study the electronic, Fermi surface, Curie temperature and optical properties of Zr2CoAl alloy. The alloy with Li2AgSb and Cu2MnAl structures are compared in terms of magnetic properties, and the electronic structures in two structures are also discussed. According to the calculated electronic states, it finds that the Zr2CoAl with Li2AgSb structure is half-metallic ferromagnet with an integral magnetic moment of 2.00 mu(beta), meanwhile we also notice the d-d and p-d hybridizations are responsible for the formation of minority-spin gap, furthermore, the fat-bands are applied to discuss the mixture between d and p electrons in the vicinity of the Fermi level. The Fermi surfaces related to the valence bands are constructed, and it is found that the spin-up valence bands 26, 27 and 28 across the Fermi energy dominate the nature of electrons. By mapping the system onto a Heisenberg Hamiltonian, we obtain the exchange coupling parameters, and observe that the Zr(A)-Co(C) and Zr(A)-Zr(B) interactions provide a major contribution for exchange interactions. Based on the calculated exchange coupling parameters, the Curie temperature is estimated to be 287.86 K at equilibrium, and also the dependence of Curie temperature on lattice constant related to the tunable Curie temperature in Zr2CoAl alloy is studied. Finally, we report the optical properties of Zr2CoAl alloy, and present the photon energy dependence of the absorption, the optical conductivity and the loss function.
  •  
2.
  • Yu, ChaoQing, et al. (författare)
  • Managing nitrogen to restore water quality in China
  • 2019
  • Ingår i: Nature. - : Nature Publishing Group. - 0028-0836 .- 1476-4687. ; 567:7749, s. 516-520
  • Tidskriftsartikel (refereegranskat)abstract
    • The nitrogen cycle has been radically changed by human activities(1). China consumes nearly one third of the world's nitrogen fertilizers. The excessive application of fertilizers(2,3) and increased nitrogen discharge from livestock, domestic and industrial sources have resulted in pervasive water pollution. Quantifying a nitrogen 'boundary'(4) in heterogeneous environments is important for the effective management of local water quality. Here we use a combination of water-quality observations and simulated nitrogen discharge from agricultural and other sources to estimate spatial patterns of nitrogen discharge into water bodies across China from 1955 to 2014. We find that the critical surface-water quality standard (1.0 milligrams of nitrogen per litre) was being exceeded in most provinces by the mid-1980s, and that current rates of anthropogenic nitrogen discharge (14.5 +/- 3.1 megatonnes of nitrogen per year) to fresh water are about 2.7 times the estimated 'safe' nitrogen discharge threshold (5.2 +/- 0.7 megatonnes of nitrogen per year). Current efforts to reduce pollution through wastewater treatment and by improving cropland nitrogen management can partially remedy this situation. Domestic wastewater treatment has helped to reduce net discharge by 0.7 +/- 0.1 megatonnes in 2014, but at high monetary and energy costs. Improved cropland nitrogen management could remove another 2.3 +/- 0.3 megatonnes of nitrogen per year-about 25 per cent of the excess discharge to fresh water. Successfully restoring a clean water environment in China will further require transformational changes to boost the national nutrient recycling rate from its current average of 36 per cent to about 87 per cent, which is a level typical of traditional Chinese agriculture. Although ambitious, such a high level of nitrogen recycling is technologically achievable at an estimated capital cost of approximately 100 billion US dollars and operating costs of 18-29 billion US dollars per year, and could provide co-benefits such as recycled wastewater for crop irrigation and improved environmental quality and ecosystem services.
  •  
3.
  • Luo, Zhenghui, et al. (författare)
  • Fine-Tuning Energy Levels via Asymmetric End Groups Enables Polymer Solar Cells with Efficiencies over 17%
  • 2020
  • Ingår i: Joule. - : CELL PRESS. - 2542-4351. ; 4:6, s. 1236-1247
  • Tidskriftsartikel (refereegranskat)abstract
    • Generally, it is important to fine-tune the energy levels of donor and acceptor materials in the field of polymer solar cell (PSCs) to achieve a minimal highest occupied molecular orbital (HOMO) energy offset, which yet is still sufficient for charge separation. Based on the high-performance small-molecule acceptor (SMA) of BTP-4F, we modified the end groups of BTP-4F from IC-2F to CPTCN-Cl. It was found that when both end groups were substituted by CPTCN-Cl, the energy level upshift was too large that caused unfavorable energetic alignment, thus poor device performance. By using the strategy of asymmetric end groups, we were able to achieve near optimal energy level match, resulting in higher open-circuit voltage (V-OC) and power conversion efficiency (PCE) compared with those given by the PM6:BTP-4F system. Our strategy can be useful and potentially applied to othermaterial systems for maximizing efficiency of non-fullerene PSCs.
  •  
4.
  •  
5.
  • Xiao, Zhuang, et al. (författare)
  • Eco-Driving for Metro Trains: A Computationally Efficient Approach Using Convex Programming
  • 2023
  • Ingår i: IEEE Transactions on Vehicular Technology. - 0018-9545 .- 1939-9359. ; 72:8, s. 10063-10076
  • Tidskriftsartikel (refereegranskat)abstract
    • Eco-driving for trains has traditionally focused on minimizing mechanical energy consumption at wheels, while completely ignoring traction chain losses that are rather significant. This paper presents a computationally efficient approach to minimize the total electrical energy consumption from traction substations (TS). After a nonlinear and non-convex program is formulated in time domain, a nonlinear and non-convex program is formulated in space domain to overcome the drawbacks of the model in time domain. By convex modeling steps, the non-convex program in space domain is reformulated as a convex program that can be efficiently solved. To further reduce computational effort, a real-time iteration sequential quadratic programming (SQP) algorithm is proposed to solve the convex program in a model predictive control framework. Numerical results indicate that the proposed SQP method yields a near-optimal solution with high computational efficiency. Compared to a traditional mechanical energy consumption model, a TS-to-traction energy efficiency can be improved.
  •  
6.
  • Chen, Mo, et al. (författare)
  • Energy-Efficient and Safe-Separation Operation for Successive Trains
  • 2023
  • Ingår i: IEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC. - 2153-0017 .- 2153-0009. ; , s. 845-851
  • Konferensbidrag (refereegranskat)abstract
    • Energy-efficient and safe-separation during train operation is of great significance for urban rail transit systems, particularly on lines with high traffic density. This paper integrates the two issues and proposes a general cooperative operation method for successive trains with no limit on the number of trains. The cooperation problem is formulated as an optimal control problem and then solved as a nonlinear program. By simultaneously optimizing the speed profiles of each train, the total traction energy of the multi-train system can be minimized, ensuring safety by imposing dynamic time headway constraints among adjacent trains throughout the entire distance horizon. Moreover, a dynamic programming method is developed for comparative study, to verify the effectiveness of the proposed method.
  •  
7.
  • Shen, Yong-Feng, et al. (författare)
  • Deformation mechanisms of a 20Mn TWIP steel investigated by in situ neutron diffraction and TEM
  • 2013
  • Ingår i: Acta Materialia. - : Elsevier. - 1359-6454 .- 1873-2453. ; 61:16, s. 6093-6106
  • Tidskriftsartikel (refereegranskat)abstract
    • The deformation mechanisms and associated microstructure changes during tensile loading of an annealed twinning-induced plasticity steel with chemical composition Fe-20Mn-3Si-3Al-0.045C (wt.%) were systematically investigated using in situ time-of-flight neutron diffraction in combination with post mortem transmission electron microscopy (TEM). The initial microstructure of the investigated alloy consists of equiaxed gamma grains with the initial alpha'-phase of similar to 7% in volume. In addition to dislocation slip, twinning and two types of martensitic transformations from the austenite to alpha'- and epsilon-martensites were observed as the main deformation modes during the tensile deformation. In situ neutron diffraction provides a powerful tool for establishing the deformation mode map for elucidating the role of different deformation modes in different strain regions. The critical stress is 520 MPa for the martensitic transformation from austenite to alpha'-martensite, whereas a higher stress (>600 MPa) is required for actuating the deformation twin and/or the martensitic transformation from austenite to epsilon-martensite. Both epsilon- and alpha'-martensites act as hard phases, whereas mechanical twinning contributes to both the strength and the ductility of the studied steel. TEM observations confirmed that the twinning process was facilitated by the parent grains oriented with < 1 1 1 > or < 1 1 0 > parallel to the loading direction. The nucleation and growth of twins are attributed to the pole and self-generation formation mechanisms, as well as the stair-rod cross-slip mechanism.
  •  
8.
  • Fan, Qunping, 1989, et al. (författare)
  • High-performance all-polymer solar cells enabled by a novel low bandgap non-fully conjugated polymer acceptor
  • 2021
  • Ingår i: Science in China Series B. - : Springer Nature. - 1674-7291 .- 1869-1870. ; 64, s. 1380-1388
  • Tidskriftsartikel (refereegranskat)abstract
    • Anon-fully conjugated polymer as a new class of acceptor materials has shown some advantages over its small molecular counterpart when used in photoactive layers for all-polymer solar cells (all-PSCs), despite a low power conversion efficiency (PCE) caused by its narrow absorption spectra. Herein, a novel non-fully conjugated polymer acceptor PFY-2TS with a low bandgap of similar to 1.40 eV was developed, via polymerizing a large pi-fused small molecule acceptor (SMA) building block (namely YBO) with a non-conjugated thioalkyl linkage. Compared with its precursor YBO, PFY-2TS retains a similar low bandgap but a higher LUMO level. Moreover, compared with the structural analog of YBO-based fully conjugated polymer acceptor PFY-DTC, PFY-2TS shows similar absorption spectrum and electron mobility, but significantly different molecular crystallinity and aggregation properties, which results in optimal blend morphology with a polymer donor PBDB-T and better device physical processes in all-PSCs. As a result, PFY-2TS-based all-PSCs achieved a PCE of 12.31% with a small energy loss of 0.56 eV enabled by the reduced non-radiative energy loss (0.24 eV), which is better than that of 11.08% for the PFY-DTC-based ones. Our work clearly demonstrated that non-fully conjugated polymers as a new class of acceptor materials are very promising for the development of high-performance all-PSCs.
  •  
9.
  • Xiao, Zhuang, et al. (författare)
  • Energy-efficient predictive control for trams incorporating disjunctive time constraints from traffic lights
  • 2023
  • Ingår i: Transportation Research, Part C: Emerging Technologies. - 0968-090X. ; 151
  • Tidskriftsartikel (refereegranskat)abstract
    • Tram operations are often blocked by traffic lights, leading to frequent decelerations and re-accelerations that increase operational energy consumption. This paper focuses on tram energy-efficient control problem incorporating time constraints from traffic lights that have multiple feasible green time windows (GTWs). We formulate the problem as a mixed-integer nonlinear program (MINLP), where binary variables are assigned to model disjunctive time constraints of the GTWs. To address computational challenge of solving the MINLP, we reformulate it as a tractable nonlinear program (NLP). Specifically, an equivalent NLP is first presented by replacing the integrality constraint with nonlinear constraints, and then the nonlinear constraints are relaxed and penalized into cost functions. To recover a solution of the MINLP, we propose a computationally efficient sequential quadratic programming algorithm in a shrinking horizon model predictive control framework, which updates the penalty parameter and quadratic programming subproblems in parallel. The solution obtained from the subproblem is feasible in each iteration, and convergence of the feasibility iterations can be enforced by the updated penalty. The performance of the proposed approach is investigated on different scenarios using real-life tram data. Results show that the method is able to generate energy-efficient driving trajectories in a dynamic environment, while crossing traffic lights in effective GTWs without unnecessary decelerations and re-accelerations.
  •  
10.
  • Zhang, Lixiu, et al. (författare)
  • Advances in the Application of Perovskite Materials
  • 2023
  • Ingår i: NANO-MICRO LETTERS. - : SHANGHAI JIAO TONG UNIV PRESS. - 2311-6706. ; 15:1
  • Forskningsöversikt (refereegranskat)abstract
    • Nowadays, the soar of photovoltaic performance of perovskite solar cells has set off a fever in the study of metal halide perovskite materials. The excellent optoelectronic properties and defect tolerance feature allow metal halide perovskite to be employed in a wide variety of applications. This article provides a holistic review over the current progress and future prospects of metal halide perovskite materials in representative promising applications, including traditional optoelectronic devices (solar cells, light-emitting diodes, photodetectors, lasers), and cutting-edge technologies in terms of neuromorphic devices (artificial synapses and memristors) and pressure-induced emission. This review highlights the fundamentals, the current progress and the remaining challenges for each application, aiming to provide a comprehensive overview of the development status and a navigation of future research for metal halide perovskite materials and devices.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy