SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sun Xiao Feng 1959 ) ;pers:(Gopinath Madhumala)"

Sökning: WFRF:(Sun Xiao Feng 1959 ) > Gopinath Madhumala

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Gopi, Janani, et al. (författare)
  • Functionality of Intron-Specific Genes and Cancer Stem Cells in the Progression of Colorectal Cancer
  • 2020
  • Ingår i: Cancer Stem Cells: New Horizons in Cancer Therapies. - Singapore : Springer. - 9789811551192 - 9789811551208 ; , s. 223-239
  • Bokkapitel (refereegranskat)abstract
    • This review article deals with comprehensive information about the evolutionary history of introns with their localization and functions in the gene transcripts of colorectal cancer precisely. In this way, the major breakthrough in the molecular biology discipline was the discovery of introns by Richard Robert and Phil Sharp in 1977. Firstly, noncoding regions are recognized by various assortments of regulatory ncRNA sequences such as circular RNA, telomere-associated RNA, small nuclear RNA, Piwi-interacting RNA, small interfering RNA, small nucleolar RNA, microRNA, and long noncoding RNA. Fortunately, splicing process of mRNA strand deals with the excision of introns via spliceosomal proteins into mature mRNA which is witnessed only in eukaryotic organisms and devoid of the splicing machinery components in the prokaryotic organisms. The major focal point relies on intronic genes mainly involved in the progression of colorectal cancer with preliminary information. An alternative splicing process takes place in mRNA that implicates in intron retention leading to varied gene expression in cells and tissues and their promotion in colorectal cancer. Therefore, colorectal cancer-associated diseases have paved the way to know more about the intronic genes mainly concentrated among them in the progression of the related diseases. Hence, the focus of the researchers is toward the fascinating cellular and molecular biology aspects of the regulatory intronic sequences known to enhance as well as repress particular gene expression in tumor microenvironment of colorectal cancer by analyzing the genome and proteome levels for the betterment of human kind that is intended for various therapeutic purposes.
  •  
2.
  • Gopinath, Madhumala, et al. (författare)
  • Role of Hippo Pathway Effector Tafazzin Protein in Maintaining Stemness of Umbilical Cord-Derived Mesenchymal Stem Cells (UC-MSC)
  • 2018
  • Ingår i: International Journal of Hematology-Oncology and Stem Cell Research. - : Tehran University of Medical Sciences. - 2008-3009 .- 2008-2207. ; 12:2, s. 153-165
  • Forskningsöversikt (refereegranskat)abstract
    • Tafazzin (TAZ) protein has been upregulated in various types of human cancers, although the basis for elevation is uncertain, it has been made definite that the effect of mutation in the hippo pathway, particularly when it is switched off, considerably activates tafazzin transcriptionally and thus this results in tissue or tumor overgrowth. Recent perceptions into the activity of tafazzin, have ascribed to it, a role as stem cell factor in mouse mesenchymal and as well as in neural stem cells. Being a downstream molecule in Hippo signalling, phosphorylation or dephosphorylation of tafazzin gene regulates its transcriptional activity and the stemness of mesenchymal stem cells. Commonly, extracellular matrix controls the stem cell fate commitment and perhaps tafazzin controls stemness through altering the extra cellular matrix. Extracellular matrix is generally made up of prime proteoglycans and the fate stabilization of the resulting lineages is surveilled by engineering these glycans. Tafazzin degradation and addition of proteoglycans affect physical attributes of the extracellular matrix that drives cell differentiation into various lineages. Thus, tafazzin along with major glycans present in the extracellular matrix is involved in imparting stemness. However, there are incoherent molecular events, wherein both tafazzin and the extracellular matrix components, together either activate or inhibit differentiation of stem cells. This review discusses about the role of tafazzin oncoprotein as a stemness factor.
  •  
3.
  • Pathak, Surajit, et al. (författare)
  • Review on comparative efficacy of bevacizumab, panitumumab and cetuximab antibody therapy with combination of FOLFOX-4 in KRAS-mutated colorectal cancer patients
  • 2018
  • Ingår i: Oncotarget. - : Impact Journals, LLC. - 1949-2553. ; 9:7, s. 7739-7748
  • Forskningsöversikt (refereegranskat)abstract
    • Colorectal cancer, fourth leading form of cancer worldwide and is increasing in alarming rate in the developing countries. Treating colorectal cancer has become a big challenge worldwide and several antibody therapies such as bevacizumab, panitumumab and cetuximab are being used with limited success. Moreover, mutation in KRAS gene which is linked with the colorectal cancer initiation and progression further interferes with the antibody therapies. Considering median progression free survival and overall survival in account, this review focuses to identify the most efficient antibody therapy in combination with chemotherapy (FOLFOX-4) in KRAS mutated colorectal cancer patients. The bevacizumab plus FOLFOX-4 therapy shows about 9.3 months and 8.7 months of progression free survival for KRAS wild and mutant type, respectively. The overall survival is about 34.8 months for wild type whereas for the mutant it is inconclusive for the same therapy. In comparison, panitumumab results in better progression-free survival which is about (9.6 months) and overall survival is about (23.9 months) for the wild type KRAS and the overall survival is about 15.5 months for the mutant KRAS. Cetuximab plus FOLFOX-4 therapy shows about 7.7 months and 5.5 months of progression-free survival for wild type KRAS and mutant type, respectively. Thus, panitumumab shows significant improvement in overall survival rate for wild type KRAS, validating as a cost effective therapeutic for colorectal cancer therapy. This review depicts that panitumumab along with FOLFOX-4 has a higher response in colorectal cancer patients than the either of the two monoclonal antibodies plus FOLFOX-4.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy