SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sundler Frank) ;pers:(Brundin Patrik)"

Sökning: WFRF:(Sundler Frank) > Brundin Patrik

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bacos, Karl, et al. (författare)
  • Islet beta-cell area and hormone expression are unaltered in Huntington's disease.
  • 2008
  • Ingår i: Histochemistry and Cell Biology. - : Springer Science and Business Media LLC. - 1432-119X .- 0948-6143. ; 129, s. 623-629
  • Tidskriftsartikel (refereegranskat)abstract
    • Neurodegenerative disorders are often associated with metabolic alterations. This has received little attention, but might be clinically important because it can contribute to symptoms and influence the course of the disease. Patients with Huntington's disease (HD) exhibit increased incidence of diabetes mellitus (DM). This is replicated in mouse models of HD, e.g., the R6/2 mouse, in which DM is primarily caused by a deficiency of beta-cells with impaired insulin secretion. Pancreatic tissue from HD patients has previously not been studied and, thus, the pathogenesis of DM in HD is unclear. To address this issue, we examined pancreatic tissue sections from HD patients at different disease stages. We found that the pattern of insulin immunostaining, levels of insulin transcripts and islet beta-cell area were similar in HD patients and controls. Further, there was no sign of amyloid deposition in islets from HD patients. Thus, our data show that pancreatic islets in HD patients appear histologically normal. Functional studies of HD patients with respect to insulin secretion and islet function are required to elucidate the pathogenesis of DM in HD. This may lead to a better understanding of HD and provide novel therapeutic targets for symptomatic treatment in HD.
  •  
2.
  • Björkqvist, Maria, et al. (författare)
  • Progressive alterations in the hypothalamic-pituitary-adrenal axis in the R6/2 transgenic mouse model of Huntington's disease
  • 2006
  • Ingår i: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 15:10, s. 1713-1721
  • Tidskriftsartikel (refereegranskat)abstract
    • Huntington's disease (HD) is characterized by a triad of motor, psychiatric and cognitive symptoms. Although many of these symptoms are likely to be related to central nervous system pathology, others may be due to changes in peripheral tissues. The R6/2 mouse, a transgenic model of HD expressing exon 1 of the human HD gene, develops progressive alterations in the hypothalamic-pituitary-adrenal axis, reminiscent of a Cushing-like syndrome. We observed muscular atrophy, reduced bone mineral density, abdominal fat accumulation and insulin resistance in the mice. All these changes could be consequences of increased glucocorticoid levels. Indeed, hypertrophy of the adrenal cortex and a progressive increase in serum and urine corticosterone levels were found in R6/2 mice. In addition, the intermediate pituitary lobe was markedly enlarged and circulating adreno-corticotrophic hormone (ACTH) increased. Under normal conditions dopamine represses the ACTH expression. In the R6/2 mice, however, the expression of pituitary dopamine D2 receptors was reduced by half, possibly explaining the increase in ACTH. Urinary samples from 82 HD patients and 68 control subjects were analysed for cortisol: in accord with the observations in the R6/2 mice, urinary cortisol increased in parallel with disease progression. This progressive increase in cortisol may contribute to the clinical symptoms, such as muscular wasting, mood changes and some of the cognitive deficits that occur in HD.
  •  
3.
  • Björkqvist, Maria, et al. (författare)
  • The R6/2 transgenic mouse model of Huntington's disease develops diabetes due to deficient {beta}-cell mass and exocytosis.
  • 2005
  • Ingår i: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 14:5, s. 565-574
  • Tidskriftsartikel (refereegranskat)abstract
    • Diabetes frequently develops in Huntington's disease (HD) patients and in transgenic mouse models of HD such as the R6/2 mouse. The underlying mechanisms have not been clarified. Elucidating the pathogenesis of diabetes in HD would improve our understanding of the molecular mechanisms involved in HD neuropathology. With this aim, we examined our colony of R6/2 mice with respect to glucose homeostasis and islet function. At week 12, corresponding to end-stage HD, R6/2 mice were hyperglycemic and hypoinsulinemic and failed to release insulin in an intravenous glucose tolerance test. In vitro, basal and glucose-stimulated insulin secretion was markedly reduced. Islet nuclear huntingtin inclusions increased dramatically over time, predominantly in ß-cells. ß-cell mass failed to increase normally with age in R6/2 mice. Hence, at week 12, ß-cell mass and pancreatic insulin content in R6/2 mice were 35±5 and 16±3% of that in wild-type mice, respectively. The normally occurring replicating cells were largely absent in R6/2 islets, while no abnormal cell death could be detected. Single cell patch-clamp experiments revealed unaltered electrical activity in R6/2 ß-cells. However, exocytosis was virtually abolished in ß- but not in {alpha}-cells. The blunting of exocytosis could be attributed to a 96% reduction in the number of insulin-containing secretory vesicles. Thus, diabetes in R6/2 mice is caused by a combination of deficient ß-cell mass and disrupted exocytosis.
  •  
4.
  • Papalexi, Eugenia, et al. (författare)
  • Reduction of GnRH and infertility in the R6/2 mouse model of Huntington's disease.
  • 2005
  • Ingår i: European Journal of Neuroscience. - : Wiley. - 1460-9568 .- 0953-816X. ; 22:6, s. 1541-1546
  • Tidskriftsartikel (refereegranskat)abstract
    • Reductions in testosterone and luteinizing hormone levels and reduced sexual functions have been reported in Huntington's disease (HD) patients. Atrophy of the reproductive organs and loss of fertility have also been observed in the R6/2 mouse, which is currently the most studied transgenic model of HD. In an effort to define the cause of infertility we studied the expression of gonadotropin-releasing hormone (GnRH) in the medial septum, diagonal band of Broca and hypothalamus of R6/2 male mice during sexual maturation. We found a progressive reduction in the numbers of GnRH-immunoreactive neurons in the analysed brain areas of R6/2 mice starting at 5 weeks of age and becoming statistically significant with only 10% of the neurons remaining by 9 weeks of age. Atrophy of testes and seminal vesicles combined with a significant reduction in serum and testicular testosterone levels were detected in 12-week-old R6/2mice. These results suggest that infertility in the R6/2 males is due either to death of GnRH neurons or to a reduction in GnRH expression leading to a downstream impairment of the gonadotropic hormones. Gonadotropic hormone replacement did not mitigate weight loss or restore motor function in R6/2 males.
  •  
5.
  • Petersén, Åsa, et al. (författare)
  • Orexin loss in Huntington's disease.
  • 2005
  • Ingår i: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 14:1, s. 39-47
  • Tidskriftsartikel (refereegranskat)abstract
    • Huntington's disease (HD) is a devastating neurodegenerative disorder caused by an expanded CAG repeat in the gene encoding huntingtin, a protein of unknown function. Mutant huntingtin forms intracellular aggregates and is associated with neuronal death in select brain regions. The most studied mouse model (R6/2) of HD replicates many features of the disease, but has been reported to exhibit only very little neuronal death. We describe for the first time a dramatic atrophy and loss of orexin neurons in the lateral hypothalamus of R6/2 mice. Importantly, we also found a significant atrophy and loss of orexin neurons in Huntington patients. Like animal models and patients with impaired orexin function, the R6/2 mice were narcoleptic. Both the number of orexin neurons in the lateral hypothalamus and the levels of orexin in the cerebrospinal fluid were reduced by 72% in end-stage R6/2 mice compared with wild-type littermates, suggesting that orexin could be used as a biomarker reflecting neurodegeneration. Our results show that the loss of orexin is a novel and potentially very important pathology in HD.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy