SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sundqvist Bertil) ;pers:(Zou Bo)"

Sökning: WFRF:(Sundqvist Bertil) > Zou Bo

  • Resultat 1-10 av 15
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Cui, Jinxing, et al. (författare)
  • Structural Deformation of Sm@C88under High Pressure
  • 2015
  • Ingår i: Scientific Reports. - : Nature Publishing Group. - 2045-2322. ; 5
  • Tidskriftsartikel (refereegranskat)abstract
    • We have studied the structural transformation of Sm@C88 under pressure up to 18 GPa by infraredspectroscopy combined with theoretical simulations. The infrared-active vibrational modes of Sm@C88 at ambient conditions have been assigned for the first time. Pressure-induced blue and red shiftsof the corresponding vibrational modes indicate an anisotropic deformation of the carbon cage uponcompression. We propose that the carbon cage changes from ellipsoidal to approximately sphericalaround 7 GPa. A smaller deformation of the carbon bonds in the area close to the Sm atom in thecage suggests that the trapped Sm atom plays a role in minimizing the compression of the adjacentbonds. Pressure induced a significant reduction of the band gap of the crystal. The HOMO-LUMOgap of the Sm@C88 molecule decreases remarkably at 7 GPa as the carbon cage is deformed. Also,compression enhances intermolecular interactions and causes a widening of the energy bands. Botheffects decrease the band gap of the sample. The carbon cage deforms significantly above 7 GPa,from spherical to a peanut-like shape and collapses at 18 GPa.
  •  
2.
  • Cui, Wen, et al. (författare)
  • Reversible pressure-induced polymerization of Fe(C5H5)(2) doped C-70
  • 2013
  • Ingår i: Carbon. - : Pergamon-Elsevier Science. - 0008-6223 .- 1873-3891. ; 62, s. 447-454
  • Tidskriftsartikel (refereegranskat)abstract
    • High pressure Raman, IR and X-ray diffraction (XRD) studies have been carried out on C-70(Fe(C5H5)(2))(2) (hereafter, "C-70(Fc)(2)") sheets. Theoretical calculation is further used to analyze the Electron Localization Function (ELF) and charge transfer in the crystal and thus to understand the transformation of C-70(Fc)(2) under pressure. Our results show that even at room temperature dimeric phase and one dimensional (1D) polymer phase of C-70 molecules can be formed at about 3 and 8 GPa, respectively. The polymerization is found to be reversible Upon decompression and the reversibility is related to the pressure-tuned charge transfer, as well as the overridden steric repulsion of counter ions. According to the layered structure of the intercalated ferrocene molecules formed in the crystal, we suggest that ferrocene acts as not only a spacer to restrict the polymerization of C-70 molecules within a layer, but also as charge reservoir to tune the polymerization process. This supplies a possible way for us to design the polymerization of fullerenes at suitable conditions.
  •  
3.
  • Cui, Wen, et al. (författare)
  • Synthesis of alkali-metal-doped C60 nanotubes
  • 2011
  • Ingår i: Diamond and Related Materials. - : Elsevier BV. ; , s. 93-96
  • Konferensbidrag (refereegranskat)abstract
    • C60 nanotubes have been synthesized by a solution–solution method. After degassing in a dynamic vacuum, the C60 nanotubes were doped with alkali metals by means of vapor evaporation method. Different temperatures have been studied to evaporate the alkali metals for the doping experiments. Raman spectrum was further employed to analyze the doping concentration of the obtained samples. It was found that all three alkali metals (Li, Na and K) used can be efficiently doped into the C60 nanotubes, forming AxC60 nanotubes. The doping concentration of Li, Na changed from low to high level, depending on the experiment temperatures, while K doping always gave saturated doping. The melt points, the ionic sizes and vapor pressures of alkali metals were thought to affect the final doping results.
  •  
4.
  • Hou, Yuanyuan, et al. (författare)
  • Comparative study of pressure-induced polymerization of C60 nanorods and single crystals
  • 2007
  • Ingår i: Journal of Physics Condensed Matter. - Bristol : Institute of Physics. - 0953-8984 .- 1361-648X. ; 19:42, s. 425207-
  • Tidskriftsartikel (refereegranskat)abstract
    • In this paper, we report a comparative study of pressure-induced polymerization in C60 nanorods and bulk single crystals, treated simultaneously under various pressures and temperatures in the same experiment. For both materials, orthorhombic, tetragonal and rhombohedral phases have been produced under high pressure and high temperature. The structures have been identified and compared between the two sample types by Raman and photoluminescence spectroscopy. There are differences between the Raman and photoluminescence spectra from the two types of materials for all polymeric phases, but especially for the tetragonal phase. From the comparison between nanorods and bulk samples, we tentatively assign photoluminescence peaks for various polymeric phases.
  •  
5.
  • Liu, Bingbing, et al. (författare)
  • High pressure and high temperature induced polymeric C60 nanocrystal
  • 2008
  • Ingår i: Diamond and related materials, vol. 17, issue 4-5. - Amsterdam : Elsevier B.V.. ; , s. 620-623
  • Konferensbidrag (refereegranskat)abstract
    • In this paper, C60 nanosheets with polymeric phases have been obtained under various high pressures and high temperatures, including orthorhombic and tetragonal polymeric phases. The structures have been identified and compared with those of nanorods by photoluminescence and Raman spectroscopies. The main fluorescence band shifted from 1.70 eV in the monomeric phase to near infrared in the polymeric phase when pressure and temperature were increased. The difference of photoluminescence and Raman spectra between nanosheets and nanorods samples treated under the same conditions is probably caused by different polymerization degree in these samples because of different shapes.
  •  
6.
  • Liu, Dedi, et al. (författare)
  • High pressure and high temperature induced polymerization of C60 nanotubes
  • 2011
  • Ingår i: CrystEngComm. - : Royal Society of Chemistry. - 1466-8033. ; 13:10, s. 3600-3605
  • Tidskriftsartikel (refereegranskat)abstract
    • C60 nanotubes with outer diameters ranging from 400–800 nm were polymerized at 1.5 GPa, 573 K and 2.0 GPa, 700 K, respectively. Raman and photoluminescence spectroscopy were employed to characterize the polymeric phases of the treated samples. Both Raman and photoluminescence spectra showed that the C60 nanotubes transformed into the dimer and orthorhombic phases under the two different conditions, respectively. The photoluminescence peaks were tuned from visible to near infrared range. Comparative studies indicated that C60 nanotubes were more difficult to polymerize than bulk C60 material under the same conditions due to the nanoscale size effect in the C60 nanotubes.
  •  
7.
  • Liu, Dedi, et al. (författare)
  • In situ Raman and photoluminescence study on pressure-induced phase transition in C60 nanotubes
  • 2012
  • Ingår i: Journal of Raman Spectroscopy. - : Wiley. - 0377-0486 .- 1097-4555. ; 43:6, s. 737-740
  • Tidskriftsartikel (refereegranskat)abstract
    • Single crystalline C60 nanotubes having face-centered-cubic structure with diameters in the nanometer range were synthesized by a solution method. In situ Raman and photoluminescence spectroscopy under high pressure were employed to study the structural stabilities and transitions of the pristine C60 nanotubes. A phase transition, probably because of the orientational ordering of C60 molecules, from face-centered-cubic structure to simple cubic structure occurred at the pressure between 1.46 and 2.26 GPa. At above 20.41 GPa, the Raman spectrum became very diffuse and lost its fine structure in all wavenumber regions, and only two broad and asymmetry peaks initially centered at 1469 and 1570cm-1 were observed, indicating an occurrence of amorphization. This amorphous phase remained to be reversible until 31.1 GPa, and it became irreversible to the ambient pressure after the pressure cycle of 34.3 GPa was applied.
  •  
8.
  • Liu, Dedi, et al. (författare)
  • Pressure-induced phase transitions of C70 nanotubes
  • 2011
  • Ingår i: The Journal of Physical Chemistry C. - : American Chemical Society. - 1932-7447 .- 1932-7455. ; 115:18, s. 8918-8922
  • Tidskriftsartikel (refereegranskat)abstract
    • Single crystalline C70 nanotubes having a face-centered-cubic (fcc) structure with diameters on a nanometer scale were synthesized by a facile solution method. In situ high pressure Raman spectroscopy and X-ray diffraction have been employed to study the structural stability and phase transitions of the pristine sample. We show that the molecular orientation-related phase transition from the fcc structure to a rhombohedral structure occurs at about 1.5 GPa, which is 1 GPa higher than in bulk C70. Also, the C70 molecules themselves are more stable in the nanotubes than in bulk crystals, manifested by a partial amorphization at 20 GPa. The crystal structure of C70 nanotubes could partially return to the initial structure after a pressure cycle above 30.8 GPa, and the C70 molecules were intact up to 43 GPa. The bulk modulus of C70 nanotubes is measured to be 50 GPa, which is twice larger than that of bulk C70.
  •  
9.
  • Liu, Dedi, et al. (författare)
  • Synthesis and solid-state studies of self-assembled C60 microtubes
  • 2011
  • Ingår i: Diamond and Related Materials, vol. 20 issue 2. - : Elsevier BV. ; , s. 178-182
  • Konferensbidrag (refereegranskat)abstract
    • C60 microtubes were fabricated by a modified solution evaporation method, evaporating a solution of C60 in toluene in an atmosphere of m-xylene at room temperature. The C60 microtubes have outer diameters ranging from 2 to 8 μm. IR spectra, TG analysis and X-ray diffraction showed a solvated structure for the as-grown C60 microtubes. Through a gentle heat-treatment in vacuum, pure C60 microtubes with single crystalline fcc structure were obtained after the elimination of solvents. It is suggested that the C60 microtubes form through self-assembly from several individual C60 nanorods.
  •  
10.
  • Ma, Honglei, et al. (författare)
  • Synchrotron X-ray diffraction and infrared spectroscopy studies of C60H18 under high pressure
  • 2010
  • Ingår i: The Journal of Physical Chemistry Letters. - : American Chemical Society. - 1948-7185. ; 1:4, s. 714-719
  • Tidskriftsartikel (refereegranskat)abstract
    • In situ high-pressure angle-dispersive synchrotron X-ray diffraction and high-pressure mid-infrared (IR) spectrum measurements of C60H18 were carried out up to 32 and 10.2 GPa, respectively. Our diffraction data indicated that the fcc structure of C60H18 was stable up to 32 GPa. The bulk modulus B0 was determined to be 21 ± 1.16 GPa, about 40% higher than that of C60. The C−H vibrations still existed up to 10.2 GPa, and the vibrational frequencies decreased with increasing pressure. IR-active vibrational frequencies and their corresponding eigenvectors of C60H18 were simulated by DMOL3. The effects of the hydrogen atoms attached to the fullerene molecular cage on the stability of the structure under high pressure are discussed.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 15

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy