SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Svenningsson Birgitta) ;pers:(Holst Thomas)"

Sökning: WFRF:(Svenningsson Birgitta) > Holst Thomas

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ahlberg, Erik, et al. (författare)
  • No particle mass enhancement from induced atmospheric ageing at a rural site in northern Europe
  • 2019
  • Ingår i: Atmosphere. - : MDPI AG. - 2073-4433. ; 10:7
  • Tidskriftsartikel (refereegranskat)abstract
    • A large portion of atmospheric aerosol particles consists of secondary material produced by oxidation reactions. The relative importance of secondary organic aerosol (SOA) can increase with improved emission regulations. A relatively simple way to study potential particle formation in the atmosphere is by using oxidation flow reactors (OFRs) which simulate atmospheric ageing. Here we report on the first ambient OFR ageing experiment in Europe, coupled with scanning mobility particle sizer (SMPS), aerosol mass spectrometer (AMS) and proton transfer reaction (PTR)-MS measurements. We found that the simulated ageing did not produce any measurable increases in particle mass or number concentrations during the two months of the campaign due to low concentrations of precursors. Losses in the reactor increased with hydroxyl radical (OH) exposure and with increasing difference between ambient and reactor temperatures, indicating fragmentation and evaporation of semivolatile material.
  •  
2.
  • Ahlberg, Erik, et al. (författare)
  • Secondary organic aerosol from VOC mixtures in an oxidation flow reactor
  • 2017
  • Ingår i: Atmospheric Environment. - : Elsevier BV. - 1352-2310. ; 161, s. 210-220
  • Tidskriftsartikel (refereegranskat)abstract
    • The atmospheric organic aerosol is a tremendously complex system in terms of chemical content. Models generally treat the mixtures as ideal, something which has been questioned owing to model-measurement discrepancies. We used an oxidation flow reactor to produce secondary organic aerosol (SOA) mixtures containing oxidation products of biogenic (α-pinene, myrcene and isoprene) and anthropogenic (m-xylene) volatile organic compounds (VOCs). The resulting volume concentration and chemical composition was measured using a scanning mobility particle sizer (SMPS) and a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS), respectively. The SOA mass yield of the mixtures was compared to a partitioning model constructed from single VOC experiments. The single VOC SOA mass yields with no wall-loss correction applied are comparable to previous experiments. In the mixtures containing myrcene a higher yield than expected was produced. We attribute this to an increased condensation sink, arising from myrcene producing a significantly higher number of nucleation particles compared to the other precursors. Isoprene did not produce much mass in single VOC experiments but contributed to the mass of the mixtures. The effect of high concentrations of isoprene on the OH exposure was found to be small, even at OH reactivities that previously have been reported to significantly suppress OH exposures in oxidation flow reactors. Furthermore, isoprene shifted the particle size distribution of mixtures towards larger sizes, which could be due to a change in oxidant dynamics inside the reactor.
  •  
3.
  • Kammermann, Lukas, et al. (författare)
  • Subarctic atmospheric aerosol composition: 3. Measured and modeled properties of cloud condensation nuclei
  • 2010
  • Ingår i: Journal of Geophysical Research. - 2156-2202. ; 115
  • Tidskriftsartikel (refereegranskat)abstract
    • Aerosol particles can modify cloud properties by acting as cloud condensation nuclei (CCN). Predicting CCN properties is still a challenge and not properly incorporated in current climate models. Atmospheric particle number size distributions, hygroscopic growth factors, and polydisperse CCN number concentrations were measured at the remote subarctic Stordalen mire, 200 km north of the Arctic Circle in northern Sweden. The CCN number concentration was highly variable, largely driven by variations in the total number of sufficiently large particles, though the variability of chemical composition was increasingly important for decreasing supersaturation. The hygroscopicity of particles measured by a hygroscopicity tandem differential mobility analyzer (HTDMA) was in agreement with large critical diameters observed for CCN activation (kappa approximate to 0.07-0.21 for D = 50-200 nm). Size distribution and time- and size-resolved HTDMA data were used to predict CCN number concentrations. Agreement of predictions with measured CCN within +/- 11% was achieved using parameterized Kohler theory and assuming a surface tension of pure water. The sensitivity of CCN predictions to various simplifying assumptions was further explored: We found that (1) ignoring particle mixing state did not affect CCN predictions, (2) averaging the HTDMA data in time with retaining the size dependence did not introduce a substantial bias, while individual predictions became more uncertain, and (3) predictions involving the hygroscopicity parameter recommended in literature for continental sites (kappa approximate to 0.3 +/- 0.1) resulted in a significant prediction bias. Future modeling studies should therefore at least aim at using averaged, size-resolved, site-specific hygroscopicity or chemical composition data for predictions of CCN number concentrations.
  •  
4.
  • Svenningsson, Birgitta, et al. (författare)
  • Aerosol particle formation events and analysis of high growth rates observed above a subarctic wetland-forest mosaic
  • 2008
  • Ingår i: Tellus. Series B: Chemical and Physical Meteorology. - : Stockholm University Press. - 0280-6509 .- 1600-0889. ; 60, s. 353-364
  • Tidskriftsartikel (populärvet., debatt m.m.)abstract
    • An analysis of particle formation (PF) events over a subarctic mire in northern Sweden was performed, based on number size distributions of atmospheric aerosol particles (10-500 nm in diameter) and ions (0.4-40 nm in Tammet diameter). We present classification statistics for PF events from measurements covering the period July 2005- September 2006, with a break over the winter period. The PF event frequency peaked during the summer months, in contrast to other Scandinavian sites where the frequency is highest during spring and autumn. Our analysis concentrates on calculated growth rates and estimates of concentrations and production rates of condensing vapour, deduced from the growth rates and condensational sink calculations, using AIS and SMPS data. Particle formation events with high growth rates (up to 50 nm/h) occurred repeatedly. In these cases, the newly formed nucleation mode particles were often only present for periods of a few hours. On several occasions repeated particle formation events were observed within one day, with differences in onset time of a few hour. These high growth rates were only observed when the condensation sink was higher than 0.001 s-1.
  •  
5.
  • Vaananen, R., et al. (författare)
  • Analysis of particle size distribution changes between three measurement sites in northern Scandinavia
  • 2013
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7324. ; 13:23, s. 11887-11903
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigated atmospheric aerosol particle dynamics in a boreal forest zone in northern Scandinavia. We used aerosol number size distribution data measured with either a differential mobility particle sizer (DMPS) or scanning mobility particle sizer (SMPS) at three stations (Varrio, Pallas and Abisko), and combined these data with the HYSPLIT (Hybrid Single Particle Lagrangian Integrated Trajectory) air mass trajectory analysis. We compared three approaches analysis of new particle formation events, investigation of aerosol particle number size distributions during the air mass transport from the ocean to individual stations with different overland transport times, and analysis of changes in aerosol particle number size distributions during the air mass transport from one measurement station to another. Aitken-mode particles were found to have apparent average growth rates of 0.6-0.7 nm h(-1) when the air masses traveled over land. Particle growth rates during the new particle formation (NPF) events were 3-6 times higher than the apparent particle growth during the summer period. When comparing aerosol dynamics for different overland transport times between the different stations, no major differences were found, except that in Abisko the NPF events were observed to take place in air masses with shorter overland times than at the other stations. We speculate that this is related to the meteorological differences along the paths of air masses caused by the land surface topology. When comparing air masses traveling in an east-to-west direction with those traveling in a west-to-east direction, clear differences in the aerosol dynamics were seen. Our results suggest that the condensation growth has an important role in aerosol dynamics even when NPF is not evident.
  •  
6.
  • Väänänen, Riikka, et al. (författare)
  • Analysis of particle size distribution changes between three measurement sites in Northern Scandinavia
  • 2013
  • Ingår i: Nucleation and Atmospheric Aerosols - 19th International Conference. - : AIP. - 1551-7616 .- 0094-243X. - 9780735411524 ; 1527, s. 531-534
  • Konferensbidrag (refereegranskat)abstract
    • Measured aerosol size distributions from three measurement stations and modeled air mass trajectory data were combined to study aerosol dynamics in the boreal forest zone in Northern Scandinavia. Three approaches were used: investigation of new particle formation events, analysis of air masses arriving from ocean to continent, and study of changes in the aerosol size distributions when air masses travel from one measurement site to another. The statistical analysis of air masses travelling either from the Atlantic Ocean to measurement sites or from one site to another showed that on average the condensational growth was present during the summer season, and it was not restricted only to the days when evident new particle formation was observed. The rate of this average apparent growth of particle diameter was 3-7 times smaller than the growth rate of nucleation mode particles during the new particle formation events.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy