SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Svensson Daniel) ;lar1:(his)"

Sökning: WFRF:(Svensson Daniel) > Högskolan i Skövde

  • Resultat 1-10 av 15
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Andersson Lassila, Andreas, et al. (författare)
  • Numerical evaluation of cutting strategies for thin-walled parts
  • 2024
  • Ingår i: Scientific Reports. - : Springer Nature. - 2045-2322. ; 14:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Static form errors due to in-process deflections is a major concern in flank milling of thin-walled parts. To increase both productivity and part geometric accuracy, there is a need to predict and control these form errors. In this work, a modelling framework for prediction of the cutting force-induced form errors, or thickness errors, during flank milling of a thin-walled workpiece is proposed. The modelled workpiece geometry is continuously updated to account for material removal and the reduced stiffness matrix is calculated for nodes in the engagement zone. The proposed modelling framework is able to predict the resulting thickness errors for a thin-walled plate which is cut on both sides. Several cutting strategies and cut patterns using constant z-level finishing are studied. The modelling framework is used to investigate the effect of different cut patterns, machining allowance, cutting tools and cutting parameters on the resulting thickness errors. The framework is experimentally validated for various cutting sequences and cutting parameters. The predicted thickness errors closely correspond to the experimental results. It is shown from numerical evaluations that the selection of an appropriate cut pattern is crucial in order to reduce the thickness error. Furthermore, it is shown that an increased machining allowance gives a decreased thickness error for thin-walled plates.
  •  
2.
  • Andersson, Tobias, et al. (författare)
  • 3D-Simulation of Heat Flow in Indexable Drilling
  • 2023
  • Ingår i: Key Engineering Materials. - : Scientific.Net. - 1013-9826 .- 1662-9795. ; 955, s. 53-62
  • Tidskriftsartikel (refereegranskat)abstract
    • In machining, the heat flow into the workpiece during the cutting process is often a major concern. The temperature rise can lead to substantial residual stresses or elastic in-process deformations which may result in the dimensional tolerance requirements being violated. In the present study a modelling strategy is developed for determination of the heat load during indexable drilling. The heat load on the workpiece is determined from 3D thermomechanical Coupled Eulerian Lagrangian analyses of orthogonal turning for various chip thicknesses and cutting speeds. The determined heat load is then transferred to a 3D transient heat transfer analysis of the indexable drilling process for the determination of the temperature field. Thereby, this modelling technique avoids the complex cutting process that is performed in real cutting simulations and thereby reducing the computational complexity of the problem considerably. The simulated temperatures are compared with experimentally measured temperatures and some conclusions are drawn regarding the modelling approach.
  •  
3.
  • Andersson, Tobias, et al. (författare)
  • Modelling and simulation of heat flow in indexable insert drilling
  • 2024
  • Ingår i: The International Journal of Advanced Manufacturing Technology. - : Springer Nature. - 0268-3768 .- 1433-3015. ; 131:9-10, s. 5177-5192
  • Tidskriftsartikel (refereegranskat)abstract
    • In machining, the heat generated during the process deforms the components and the final shape might not meet specified tolerances. There is therefore a need for a compensation strategy which requires knowledge of the workpiece temperature field and the associated thermal distortions. In this work, a methodology is presented for the determination of the heat load for indexable insert drilling of AISI 4140. Compared to previous research, this work has introduced a varying heat load. The heat load is extracted from thermo-mechanical finite element simulations for different nominal chip thicknesses and cutting speeds using the coupled Eulerian-Lagrangian formulation of an orthogonal turning process. The heat load is then transferred to a simplified 2D axisymmetric heat transfer model where the in-process temperature field in the workpiece is predicted. To verify the methodology, the predicted temperatures are compared to the experimentally measured temperatures for various feed rates. It is found that the model is capable of predicting the workpiece temperatures reasonably well. However, the methodology needs to be further explored to validate its applicability.
  •  
4.
  • Bermudo Gamboa, Carolina, et al. (författare)
  • Modeling of the fracture energy on the finite element simulation in Ti6Al4V alloy machining
  • 2021
  • Ingår i: Scientific Reports. - : Springer Nature. - 2045-2322. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • One of the main problems that exists when working with Finite Element Methods (FEM) applied to machining processes is the lack of adequate experimental data for simulating the material properties. Moreover, for damage models based on fracture energy, the correct selection of the energy value is critical for the chip formation process. It is usually difficult to obtain the fracture energy values and requires complex tests. In this work, an analysis of the influence of this fracture energy on the cutting force and the chip generation process has been carried out for different sets of cutting parameters. The aim is to present an empirical relationship, that allows selecting the fracture energy based on the cutting force and cutting parameters. The work is based on a FEM model of an orthogonal turning process for Ti6Al4V alloy using Abaqus/Explicit and the fracture energy empirical relation. This work shows that it is necessary to adjust the fracture energy for each combination of cutting conditions, to be able to fit the experimental results. The cutting force and the chip geometry are analyzed, showing how the developed model adapts to the experimental results. It shows that as the cutting speed and the feed increase, the fracture energy value that best adapts to the model decreases. The evolution shows a more pronounced decrease related to the feed increment and high cutting speed. 
  •  
5.
  • Hägg, Daniel, 1974, et al. (författare)
  • Augmented levels of CD44 in macrophages from atherosclerotic subjects: a possible IL-6-CD44 feedback loop?
  • 2007
  • Ingår i: Atherosclerosis. - : Elsevier BV. - 0021-9150 .- 1879-1484. ; 190:2, s. 291-7
  • Tidskriftsartikel (refereegranskat)abstract
    • The cell-adhesion molecule CD44 likely participates in atherosclerosis development. We have shown previously that pro-inflammatory cytokines affect CD44 expression. Therefore, this work examined the role of elevated CD44 levels in human macrophages. Macrophages from human atherosclerotic subjects (n=15) showed elevated levels of CD44 transcript and protein (1.5-fold) compared to matched controls (n=15) (P=0.050 and 0.044, respectively). To test whether genetic factors influence CD44 expression, two single nucleotide polymorphisms in the CD44 gene were analyzed but these were not associated with coronary artery disease. We also examined the potential connection between plasma cytokine levels and CD44 expression. In atherosclerotic subjects, elevated CD44 expression correlates (P=0.012) with enhanced macrophage IL-6 secretion (3.13+/-2.5 pg/mL versus 0.32+/-0.16 pg/mL in controls, P=0.021). Additionally, CD44-deficient mice exhibit less circulating IL-6 than wild-type controls (9.8+/-0.7 pg/mL versus 14.3+/-0.7 pg/mL; P=0.032). Furthermore, IL-6 augments CD44 expression in primary human macrophages after 24 h (P=0.038) and 48 h (P=0.015). Taken together, our data show an IL-6-CD44 feedback loop in macrophages. Such a positive feedback loop may aggravate atherosclerosis development.
  •  
6.
  • Stigh, Ulf, et al. (författare)
  • Cohesive zone modelling and the fracture process of structural tape
  • 2016
  • Ingår i: Proceedia Structural Integrity. - : Elsevier. - 2452-3216. ; 2, s. 235-244
  • Tidskriftsartikel (refereegranskat)abstract
    • Structural tapes provide comparable toughness as structural adhesives at orders of magnitude lower stresses. This is potentially useful to minimize the effects of differences in thermal expansion in the joining of mixed materials. The strength properties are modelled using the cohesive zone model. Thus, a cohesive zone represents the tape, i.e. stresses in the tape are transmitted to the substrates through tractions determined by the separations of the surfaces of substrates. This simplification allows for structural analysis of large complex structures. The relation between the traction and the separation is measured experimentally using methods based on the path independence of the J-integral. Repeated experiments are performed at quasi-static loading. A mixed mode cohesive law is adapted to the experimental data. The law is implemented as a UMAT in Abaqus. Simulations show minor thermal distortions due to thermal loading and substantial structural strength in mechanical loading of a mixed material structure.
  •  
7.
  • Stigh, Ulf, et al. (författare)
  • On cohesive laws for delamination of composites
  • 2010
  • Ingår i: 14th European conference on Composite materials. - Budapest : University of Technology and Economics. - 9789633130087 - 9633130085 ; , s. 1-10
  • Konferensbidrag (refereegranskat)abstract
    • Analysis of delamination of carbon fibre reinforced composite using cohesive models is studied. A method to measure the cohesive law associated with delamination is presented. The method allows for identification of a cohesive law fit to model the fracture process at the crack tip, i.e. not considering fibre bridging. Due to the small size of the cohesive zone, an elaborated method involving simulations of the fracture process is developed. The results show larger scatter in the parameters of the cohesive law than in the fracture energy.
  •  
8.
  • Svensson, Daniel, et al. (författare)
  • An experimental method to determine the critical energy release rate associated with longitudinal compressive failure in CFRP
  • 2013
  • Ingår i: Proceeding of the 19th international conference on composite materials (ICCM 19). - 9780969679714
  • Konferensbidrag (refereegranskat)abstract
    • A test specimen for measurement of the critical energy release rate associated with longitudinal compressive failure is proposed. High strains are localized by decreasing the out-of-plane thickness towards the anticipated damage region which consists of a unidirectional (UD) laminate. Thus, the compressive fibre failure mode is isolated. Microscopic studies show that the UD-material fails in a kinking mode. A method based on a generalized form of the J-integral and full-field measurements of the strain field is developed to extract the fracture energy. The fracture energy in four experiments is measured to be 20-40 kN/m. Finite element simulations  are  performed  to  validate  the experimental results. The essential features of the response are captured by modelling the damage region with cohesive elements.
  •  
9.
  • Svensson, Daniel, et al. (författare)
  • Coupled Eulerian–Lagrangian simulation and experimental investigation of indexable drilling
  • 2022
  • Ingår i: The International Journal of Advanced Manufacturing Technology. - : Springer Nature Switzerland AG. - 0268-3768 .- 1433-3015. ; 121:1-2, s. 471-486
  • Tidskriftsartikel (refereegranskat)abstract
    • In many industries, indexable insert drills are used to cost effectively produce short holes. However, common problems such as chatter vibrations, premature tool wear and generation of long curly chips that cause poor chip evacuation make optimization of the drilling process challenging and time-consuming. Therefore, robust predictive models of indexable drilling processes are desirable to support the development towards improved tool designs, enhanced cutting processes and increased productivity. This paper presents 3D finite element simulations of indexable drilling of AISI4140 workpieces. The Coupled Eulerian–Lagrangian framework is employed, and the focus is to predict the drilling torque, thrust force, temperature distributions and chip geometries. To reduce the computational effort, the cutting process is modelled separately for the peripheral and the central inserts. The total thrust force and torque are predicted by superposing the predicted result for each insert. Experiments and simulations are conducted at a constant rotational velocity of 2400 rpm and feed rates of 0.13, 0.16 and 0.18 mm/rev. While the predicted torques are in excellent agreement, the thrust forces showed discrepancies of 12 - 20% to the experimental measured data. Effects of the friction modelling on the predicted torque and thrust force are outlined, and possible reasons for the thrust force discrepancies are discussed in the paper. Additionally, the simulations indicate that the tool, chip and the local workpiece temperature distributions are virtually unaffected by the feed rate.
  •  
10.
  • Svensson, Daniel (författare)
  • Experimental methods to determine model parameters for failure modes of CFRP
  • 2013
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The focus of this thesis is to develop methods to predict the damage response of Carbon Fibre Reinforced Polymers (CFRP). In the pursuit of reducing the manufacturing cost and weight of CFRP components, it is crucial to enable modelling of the non-linear response associated with various failure modes. Two failure modes are considered in this thesis: fibre compressive failure and interlaminar delamination. Multidirectional laminated composites are commonly used when a low weight is desired due to their high specific strength and stiffness. In a carbon/epoxy composite, almost exclusively the fibres carry the load. However, along the fibre direction, the compressive strength is considerably lower than the tensile strength. With the same reasoning, the transverse strength is considerably lower than the in-plane strength. This makes delamination and fibre compressive failure two of the major concerns in structural design. Moreover, the presence of delaminations severely reduces the compressive strength of a laminate. This can cause catastrophic failure of the structure. In Paper A, we suggest a test method for determining fracture properties associated with fibre compressive failure. A modified compact compression specimen is designed for this purpose and compressive failure takes place in a region consisting exclusively of fibres oriented parallel to the loading direction. The evaluation method is based on a generalized J-integral and full field measurements of the strain field on the surface of the specimen. Thus, the method is not restricted to small damage zones. Paper B focuses on measuring cohesive laws for delamination in pure mode loading. The cohesive laws in mode I and mode II are measured with the DCB- and ENF-specimen, respectively. With a method based on the J-integral, the energy release rate associated with the crack tip separation is measured directly. From this, the cohesive laws are derived. It is concluded that the nonlinear response at the crack tip is crucial in the evaluation of the mode II fracture energy.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 15

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy