SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Svensson Daniel) ;pers:(Wass Caroline 1976)"

Sökning: WFRF:(Svensson Daniel) > Wass Caroline 1976

  • Resultat 1-10 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Fejgin, Kim, 1978, et al. (författare)
  • Nitric oxide signaling in the medial prefrontal cortex is involved in the biochemical and behavioral effects of phencyclidine.
  • 2008
  • Ingår i: Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology. - : Springer Science and Business Media LLC. - 0893-133X. ; 33:8, s. 1874-83
  • Tidskriftsartikel (refereegranskat)abstract
    • The prefrontal cortex (PFC) is believed to play an important role in the cognitive impairments observed in schizophrenia and has also been shown to be involved in the modulation of prepulse inhibition (PPI), a measure of preattentive information processing that is impaired in schizophrenic individuals. Phencyclidine (PCP), a noncompetitive inhibitor of the NMDA receptor, exerts psychotomimetic effects in humans, disrupts PPI, and causes hypofrontality in rodents and monkeys. We have previously demonstrated that interfering with the production of nitric oxide (NO) can prevent a wide range of PCP-induced behavioral deficits, including PPI disruption. In the present study, the role of NO signaling for the behavioral and biochemical effects of PCP was further investigated. Dialysate from the medial PFC of mice receiving systemic treatment with PCP and/or the NO synthase inhibitor, N(G)-nitro-L-arginine methyl ester (L-NAME, 40 mg/kg), was analyzed for cGMP content. Furthermore, a specific inhibitor of NO-sensitive soluble guanylyl cyclase (sGC), 1H-(1,2,4)oxadiazolo(4,3-a)quinoxalin-1-one (ODQ, 0.01-1 mM), was administered into the medial PFC of mice in combination with systemic injections of PCP, followed by PPI and locomotor activity testing. PCP (5 mg/kg) caused an increase in prefrontal cGMP that could be attenuated by pretreatment with the NO synthase inhibitor, L-NAME. Moreover, bilateral microinjection of the sGC inhibitor, ODQ, into the medial PFC of mice attenuated the disruption of PPI, but not the hyperlocomotion, caused by PCP. The present study shows that NO/sGC/cGMP signaling pathway in the medial PFC is involved in specific behavioral effects of PCP that may have relevance for the disabling cognitive dysfunction found in patients with schizophrenia.
  •  
3.
  • Fejgin, Kim, 1978, et al. (författare)
  • The atypical antipsychotic, aripiprazole, blocks phencyclidine-induced disruption of prepulse inhibition in mice.
  • 2007
  • Ingår i: Psychopharmacology. - : Springer Science and Business Media LLC. - 0033-3158 .- 1432-2072. ; 191:2, s. 377-85
  • Tidskriftsartikel (refereegranskat)abstract
    • RATIONALE: The psychotomimetic drug, phencyclidine, induces schizophrenia-like behavioural changes in both humans and animals. Phencyclidine-induced disruption of sensory motor gating mechanisms, as assessed by prepulse inhibition of the acoustic startle, is widely used in research animals as a screening model for antipsychotic properties in general and may predict effects on negative and cognitive deficits in particular. Dopamine (DA) stabilizers comprise a new generation of antipsychotics characterized by a partial DA receptor agonist or antagonist action and have been suggested to have a more favourable clinical profile. OBJECTIVE: The aim of the present study was to investigate the ability of first, second and third generation antipsychotics to interfere with the disruptive effect of phencyclidine on prepulse inhibition in mice. RESULTS: Aripiprazole blocked the phencyclidine-induced disruption of prepulse inhibition. The atypical antipsychotic clozapine was less effective, whereas olanzapine, and the typical antipsychotic haloperidol, failed to alter the effects of phencyclidine on prepulse inhibition. CONCLUSIONS: The somewhat superior efficacy of clozapine compared to haloperidol may be explained by its lower affinity and faster dissociation rate for DA D2 receptors possibly combined with an interaction with other receptor systems. Aripiprazole was found to be more effective than clozapine or olanzapine, which may be explained by a partial agonist activity of aripiprazole at DA D2 receptors. In conclusion, the present findings suggest that partial DA agonism leading to DA stabilizing properties may have favourable effects on sensorimotor gating and thus tentatively on cognitive dysfunctions in schizophrenia.
  •  
4.
  • Klamer, Daniel, 1976, et al. (författare)
  • Antagonism of the nitric oxide synthase inhibitor, L-NAME, of the effects of phencyclidine on latent inhibition in taste aversion conditioning
  • 2005
  • Ingår i: Behav Brain Res. ; 161:1, s. 60-8
  • Tidskriftsartikel (refereegranskat)abstract
    • Latent inhibition (LI) is a behavioural procedure used to evaluate the potential propsychotic and antipsychotic properties of psychoactive drugs. In the present study, a conditioned taste aversion (CTA) procedure was used to investigate the effects of the nitric oxide (NO) synthase inhibitor, N(G)-nitro-L-arginine methyl ester (L-NAME), and the psychotomimetic drugs, phencyclidine (PCP) and d-amphetamine (d-AMP) on LI. PCP (2 mg/kg) and d-AMP (0.5 mg/kg) were both found to enhance LI in this procedure. The effect of d-AMP on LI was less pronounced and this drug also caused a weak disruption of taste aversion conditioning. Pretreatment with L-NAME (10 mg/kg) blocked the LI enhancing effect of PCP on LI but not that of d-AMP. L-NAME by itself caused an attenuation of LI. L-NAME has been shown to block also other behavioural and biochemical effects of PCP in previous studies and these results and the present findings suggest that at least some of the effects PCP are dependent on NO and possibly also that some NOS inhibitors may exert antipsychotic properties.
  •  
5.
  •  
6.
  •  
7.
  • Pålsson, Erik, 1975, et al. (författare)
  • Increased cortical nitric oxide release after phencyclidine administration.
  • 2009
  • Ingår i: Synapse (New York, N.Y.). - : Wiley. - 1098-2396 .- 0887-4476. ; 63:12, s. 1083-1088
  • Tidskriftsartikel (refereegranskat)abstract
    • Phencyclidine exerts psychotomimetic effects in humans and is used as a pharmacological animal model for schizophrenia. We, and others, have demonstrated that phencyclidine induces cognitive deficits in rats that are associated with schizophrenia. These cognitive deficits can be normalized by inhibition of nitric oxide synthase. The development of selective microelectrochemical nitric oxide sensors may provide direct evidence for the involvement of nitric oxide in these effects. The aim of the present study was to use LIVE (long term in vivo electrochemistry) to investigate the effect of phencyclidine, alone or in combination with the nitric oxide synthase inhibitor L-NAME, on nitric oxide levels in the medial prefrontal cortex of freely moving rats. Phencyclidine (2 mg kg(-1)) produced an increase in cortical nitric oxide levels and this increase was ameliorated by L-NAME (10 mg kg(-1)). Tentatively, the results from the present study provide a biochemical rationale for the involvement of nitric oxide in the phencyclidine model of schizophrenia. Synapse 63:1083-1088, 2009. (c) 2009 Wiley-Liss, Inc.
  •  
8.
  • Pålsson, Erik, 1975, et al. (författare)
  • The amino acid L-lysine blocks the disruptive effect of phencyclidine on prepulse inhibition in mice.
  • 2007
  • Ingår i: Psychopharmacology. - : Springer Science and Business Media LLC. - 0033-3158 .- 1432-2072. ; 192:1, s. 9-15
  • Tidskriftsartikel (refereegranskat)abstract
    • RATIONALE: The cognitive and attentional deficits observed in schizophrenic patients are now considered central to the pathophysiology of the disorder. These deficits include an inability to filter sensory input as measured by, e.g., prepulse inhibition (PPI) reflex. Administration of phencyclidine (PCP), a drug that can induce a schizophrenia-like psychosis in humans, disrupts PPI in experimental animals. In rodents, this PCP-induced deficit can be blocked by pretreatment with nitric oxide (NO) synthase inhibitors. This suggests that some of the behavioral effects of PCP are mediated via NO. The substrate for in vivo NO production is L-arginine, and active transport of L-arginine via the cationic amino acid transporter may serve as a regulatory mechanism in NO production. OBJECTIVES: The aim of the present study was to study the effects of L-arginine transport inhibition, using acute and repeated L-lysine treatment, on PCP-induced disruption of PPI in mice. RESULTS: Subchronic, and to some extent acute, pretreatment with L-lysine blocked a PCP-induced deficit in PPI without affecting basal PPI. CONCLUSIONS: L-lysine has been shown to block L-arginine transport in vitro, most likely via a competitive blockade and down regulation of cationic amino acid transporters. However, the importance of L-arginine transport as a regulatory mechanism in NO production in vivo is still not clear. The present results lend further support to the notion that some of the effects of PCP in the central nervous system are mediated via NO and that L-arginine transport may play a role in the regulation of NO production in the brain.
  •  
9.
  • Pålsson, Erik, 1975, et al. (författare)
  • The effects of phencyclidine on latent inhibition in taste aversion conditioning: differential effects of preexposure and conditioning
  • 2005
  • Ingår i: Behav Brain Res. ; 157:1, s. 139-46
  • Tidskriftsartikel (refereegranskat)abstract
    • Latent inhibition (LI) is a behavioural procedure in which preexposure to a stimulus not followed by reinforcement retards subsequent conditioning to this stimulus when it is paired with reinforcement. Changes in LI thus reflect greater or lesser retardation of learning which essentially implies a potentiation or an attenuation of the LI effect. LI has proved sensitive to psychotomimetic and antipsychotic treatment, which has encouraged its use to model learning and attention deficits in schizophrenia. In the present study, experiments were conducted to evaluate the effects of the psychotomimetic drug, phencyclidine (PCP, 2 mg/kg), and compare it with D-amphetamine (D-AMP, 0.33 and 1 mg/kg), on LI using a conditioned taste aversion procedure. PCP was found to potentiate LI when administered acutely prior to the conditioning trails, while no such effect was observed when administered prior to the preexposure trials. D-AMP, on the other hand, disrupted LI possibly due to a failure to induce a persistent taste aversion conditioning.
  •  
10.
  • Wallén-Mackenzie, Åsa, et al. (författare)
  • Restricted cortical and amygdaloid removal of vesicular glutamate transporter 2 in preadolescent mice impacts dopaminergic activity and neuronal circuitry of higher brain function.
  • 2009
  • Ingår i: The Journal of neuroscience : the official journal of the Society for Neuroscience. - 1529-2401 .- 0270-6474. ; 29:7, s. 2238-51
  • Tidskriftsartikel (refereegranskat)abstract
    • A major challenge in neuroscience is to resolve the connection between gene functionality, neuronal circuits, and behavior. Most, if not all, neuronal circuits of the adult brain contain a glutamatergic component, the nature of which has been difficult to assess because of the vast cellular abundance of glutamate. In this study, we wanted to determine the role of a restricted subpopulation of glutamatergic neurons within the forebrain, the Vglut2-expressing neurons, in neuronal circuitry of higher brain function. Vglut2 expression was selectively deleted in the cortex, hippocampus, and amygdala of preadolescent mice, which resulted in increased locomotor activity, altered social dominance and risk assessment, decreased sensorimotor gating, and impaired long-term spatial memory. Presynaptic VGLUT2-positive terminals were lost in the cortex, striatum, nucleus accumbens, and hippocampus, and a downstream effect on dopamine binding site availability in the striatum was evident. A connection between the induced late-onset, chronic reduction of glutamatergic neurotransmission and dopamine signaling within the circuitry was further substantiated by a partial attenuation of the deficits in sensorimotor gating by the dopamine-stabilizing antipsychotic drug aripiprazole and an increased sensitivity to amphetamine. Somewhat surprisingly, given the restricted expression of Vglut2 in regions responsible for higher brain function, our analyses show that VGLUT2-mediated neurotransmission is required for certain aspects of cognitive, emotional, and social behavior. The present study provides support for the existence of a neurocircuitry that connects changes in VGLUT2-mediated neurotransmission to alterations in the dopaminergic system with schizophrenia-like behavioral deficits as a major outcome.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy