SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Svensson Erik) srt2:(2000-2019);pers:(Hansson Bengt)"

Sökning: WFRF:(Svensson Erik) > (2000-2019) > Hansson Bengt

  • Resultat 1-10 av 15
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bybee, Seth, et al. (författare)
  • Odonata (dragonflies and damselflies) as a bridge between ecology and evolutionary genomics
  • 2016
  • Ingår i: Frontiers in Zoology. - : Springer Science and Business Media LLC. - 1742-9994. ; 13:1
  • Forskningsöversikt (refereegranskat)abstract
    • Odonata (dragonflies and damselflies) present an unparalleled insect model to integrate evolutionary genomics with ecology for the study of insect evolution. Key features of Odonata include their ancient phylogenetic position, extensive phenotypic and ecological diversity, several unique evolutionary innovations, ease of study in the wild and usefulness as bioindicators for freshwater ecosystems worldwide. In this review, we synthesize studies on the evolution, ecology and physiology of odonates, highlighting those areas where the integration of ecology with genomics would yield significant insights into the evolutionary processes that would not be gained easily by working on other animal groups. We argue that the unique features of this group combined with their complex life cycle, flight behaviour, diversity in ecological niches and their sensitivity to anthropogenic change make odonates a promising and fruitful taxon for genomics focused research. Future areas of research that deserve increased attention are also briefly outlined.
  •  
2.
  • Chauhan, Pallavi, et al. (författare)
  • De novo transcriptome of Ischnura elegans provides insights into sensory biology, colour and vision genes
  • 2014
  • Ingår i: BMC Genomics. - : Springer Science and Business Media LLC. - 1471-2164. ; 15
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: There is growing interest in odonates (damselflies and dragonflies) as model organisms in ecology and evolutionary biology but the development of genomic resources has been slow. So far only one draft genome (Ladona fulva) and one transcriptome assembly (Enallagma hageni) have been published. Odonates have some of the most advanced visual systems among insects and several species are colour polymorphic, and genomic and transcriptomic data would allow studying the genomic architecture of these interesting traits and make detailed comparative studies between related species possible. Here, we present a comprehensive de novo transcriptome assembly for the blue-tailed damselfly Ischnura elegans (Odonata: Coenagrionidae) built from short-read RNA-seq data. The transcriptome analysis in this paper provides a first step towards identifying genes and pathways underlying the visual and colour systems in this insect group. Results: Illumina RNA sequencing performed on tissues from the head, thorax and abdomen generated 428,744,100 paired-ends reads amounting to 110 Gb of sequence data, which was assembled de novo with Trinity. A transcriptome was produced after filtering and quality checking yielding a final set of 60,232 high quality transcripts for analysis. CEGMA software identified 247 out of 248 ultra-conserved core proteins as 'complete' in the transcriptome assembly, yielding a completeness of 99.6%. BLASTX and InterProScan annotated 55% of the assembled transcripts and showed that the three tissue types differed both qualitatively and quantitatively in I. elegans. Differential expression identified 8,625 transcripts to be differentially expressed in head, thorax and abdomen. Targeted analyses of vision and colour functional pathways identified the presence of four different opsin types and three pigmentation pathways. We also identified transcripts involved in temperature sensitivity, thermoregulation and olfaction. All these traits and their associated transcripts are of considerable ecological and evolutionary interest for this and other insect orders. Conclusions: Our work presents a comprehensive transcriptome resource for the ancient insect order Odonata and provides insight into their biology and physiology. The transcriptomic resource can provide a foundation for future investigations into this diverse group, including the evolution of colour, vision, olfaction and thermal adaptation.
  •  
3.
  • Dudaniec, Rachael Y., et al. (författare)
  • Signatures of local adaptation along environmental gradients in a range-expanding damselfly (Ischnura elegans)
  • 2018
  • Ingår i: Molecular Ecology. - : Wiley. - 0962-1083. ; 27:11, s. 2576-2593
  • Tidskriftsartikel (refereegranskat)abstract
    • Insect distributions are shifting rapidly in response to climate change and are undergoing rapid evolutionary change. We investigate the molecular signatures underlying local adaptation in the range-expanding damselfly, Ischnura elegans. Using a landscape genomic approach combined with generalized dissimilarity modelling (GDM), we detect selection signatures on loci via allelic frequency change along environmental gradients. We analyse 13,612 single nucleotide polymorphisms (SNPs), derived from restriction site-associated DNA sequencing (RADseq), in 426 individuals from 25 sites spanning the I. elegans distribution in Sweden, including its expanding northern range edge. Environmental association analysis (EAA) and the magnitude of allele frequency change along the range expansion gradient revealed significant signatures of selection in relation to high maximum summer temperature, high mean annual precipitation and low wind speeds at the range edge. SNP annotations with significant signatures of selection revealed gene functions associated with ongoing range expansion, including heat shock proteins (HSP40 and HSP70), ion transport (V-ATPase) and visual processes (long-wavelength-sensitive opsin), which have implications for thermal stress response, salinity tolerance and mate discrimination, respectively. We also identified environmental thresholds where climate-mediated selection is likely to be strong, and indicate that I. elegans is rapidly adapting to the climatic environment during its ongoing range expansion. Our findings empirically validate an integrative approach for detecting spatially explicit signatures of local adaptation along environmental gradients.
  •  
4.
  • Karlsson, Kristina, et al. (författare)
  • The interplay between local ecology, divergent selection and genetic drift in population divergence of a sexually antagonistic female trait
  • 2014
  • Ingår i: Evolution. - : Wiley. - 0014-3820 .- 1558-5646. ; 68:7, s. 1934-1946
  • Tidskriftsartikel (refereegranskat)abstract
    • Genetically polymorphic species offer the possibility to study maintenance of genetic variation and the potential role for genetic drift in population divergence. Indirect inference of the selection regimes operating on polymorphic traits can be achieved by comparing population divergence in neutral genetic markers with population divergence in trait frequencies. Such an approach could further be combined with ecological data to better understand agents of selection. Here, we infer the selective regimes acting on a polymorphic mating trait in an insect group; the dorsal structures (either rough or smooth) of female diving beetles. Our recent work suggests that the rough structures have a sexually antagonistic function in reducing male mating attempts. For two species (Dytiscus lapponicus andGraphoderus zonatus), we could not reject genetic drift as an explanation for population divergence in morph frequencies, whereas for the third (Hygrotus impressopunctatus) we found that divergent selection pulls morph frequencies apart across populations. Furthermore, population morph frequencies in H. impressopunctatus were significantly related to local bioclimatic factors, providing an additional line of evidence for local adaptation in this species. These data, therefore, suggest that local ecological factors and sexual conflict interact over larger spatial scales to shape population divergence in the polymorphism.
  •  
5.
  • Lancaster, Lesley T, et al. (författare)
  • Gene expression under thermal stress varies across a geographic range expansion front.
  • 2016
  • Ingår i: Molecular Ecology. - : Wiley. - 0962-1083. ; 25:5, s. 1141-1156
  • Tidskriftsartikel (refereegranskat)abstract
    • Many ectothermic species are currently expanding their distributions polewards due to anthropogenic global warming. Molecular genetic mechanisms facilitating range expansion under these conditions are largely unknown, but understanding these could help mitigate expanding pests and disease vectors, or help explain why some species fail to track changing climates. Here, using RNA-seq data, we examine genome-wide changes in gene expression under heat and cold stress in the range-expanding damselfly Ischnura elegans in northern Europe. We find that both the number of genes involved and levels of gene expression under heat stress have become attenuated during the expansion, consistent with a previously-reported release from selection on heat tolerances as species move polewards. Genes upregulated under cold stress differed between core and edge populations, corroborating previously-reported rapid adaptation to cooler climates at the expansion front. Expression of sixty-nine genes exhibited a region x treatment effect; these were primarily upregulated in response to heat stress in core populations but in response to cold stress at the range edge, suggesting that some cellular responses originally adapted to heat stress may switch to cold stress functionality upon encountering novel thermal selection regimes during range expansion. Transcriptional responses to thermal stress involving heat shock and neural function genes were largely geographically conserved, while retrotransposon, regulatory, muscle function and defence gene expression patterns were more variable. Flexible mechanisms of cold stress response and the ability of some genes to shift their function between heat and cold stress might be key mechanisms facilitating rapid poleward expansion in insects. This article is protected by copyright. All rights reserved.
  •  
6.
  • Lancaster, Lesley T., et al. (författare)
  • Latitudinal shift in thermal niche breadth results from thermal release during a climate-mediated range expansion
  • 2015
  • Ingår i: Journal of Biogeography. - : Wiley. - 1365-2699 .- 0305-0270. ; 42:10, s. 1953-1963
  • Tidskriftsartikel (refereegranskat)abstract
    • AimClimate change is currently altering the geographical distribution of species, but how this process contributes to biogeographical variation in ecological traits is unknown. Range-shifting species are predicted to encounter and respond to new selective regimes during their expansion phase, but also carry historical adaptations to their ancestral range. We sought to identify how historical and novel components of the environment interact to shape latitudinal trends in thermal tolerance, thermal tolerance breadth and phenotypic plasticity of a range-shifting species. LocationSouthern and central Sweden. MethodsTo evaluate phenotypic responses to changes in the thermal selective environment, we experimentally determined the upper and lower thermal tolerances of >2000 wild-caught damselflies (Ischnura elegans) from populations distributed across core and expanding range-edge regions. We then identified changing correlations between thermal tolerance, climate and recent weather events across the range expansion. Niche modelling was employed to evaluate the relative contributions of varying climatic selective regimes to overall habitat suitability for the species in core versus range-edge regions. ResultsUpper thermal tolerance exhibited local adaptation to climate in the core region, but showed evidence of having been released from thermal selection during the current range expansion. In contrast, chill coma recovery exhibited local adaptation across the core region and range expansion, corresponding to increased climatic variability at higher latitudes. Adaptive plasticity of lower thermal tolerances (acclimation ability) increased towards the northern, expanding range edge. Main conclusionsOur results suggest micro-evolutionary mechanisms for several large-scale and general biogeographical patterns, including spatially and latitudinally invariant heat tolerances (Brett's rule) and increased thermal acclimation rates and niche breadths at higher latitudes. Population-level processes unique to climate-mediated range expansions may commonly underpin many broader, macro-physiological trends.
  •  
7.
  • Runemark, Anna, et al. (författare)
  • Cross-species testing of 27 pre-existing microsatellites in Podarcis gaigeae and Podarcis hispanica (Squamata: Lacertidae)
  • 2008
  • Ingår i: Molecular Ecology Resources. - : Wiley. - 1755-098X .- 1755-0998. ; 8:6, s. 1367-1370
  • Tidskriftsartikel (refereegranskat)abstract
    • We tested 27 microsatellite loci for cross-species amplification in the lacertids Podarcis gaigeae and Podarcis hispanica. We detected 11 and 15 polymorphic loci in the former and the latter species, respectively. In a larger sample of individuals from a single population of each species, the number of alleles ranged from five to 23 in 10 of the polymorphic loci in P. gaigeae, and between four and 13 in nine of polymorphic loci in P. hispanica. Two locus deviated from Hardy-Weinberg equilibrium in P. hispanica. Between 11 and 16 of the 27 loci also amplified successfully in three other Podarcis species.
  •  
8.
  • Runemark, Anna, et al. (författare)
  • Has the inbreeding load for a condition-dependent sexual signalling trait been purged in insular lizard populations?
  • 2013
  • Ingår i: Molecular Ecology. - : Wiley. - 0962-1083. ; 22:5, s. 1310-1321
  • Tidskriftsartikel (refereegranskat)abstract
    • Sexually selected traits are often condition-dependent and are expected to be affected by genome-wide distributed deleterious mutations and inbreeding. However, sexual selection is a powerful selective force that can counteract inbreeding through purging of deleterious mutations. Inbreeding and purging of the inbreeding load for sexually selected traits has rarely been studied across natural populations with different degrees of inbreeding. Here we investigate inbreeding effects (measured as marker-based heterozygosity) on condition-dependent sexually selected signalling trait and other morphological traits across islet- and mainland populations (n = 15) of an endemic lizard species (Podarcis gaigeae). Our data suggest inbreeding depression on a condition-dependent sexually selected signalling character among mainland subpopulations with low or intermediate levels of inbreeding, but no sign of inbreeding depression among small and isolated islet populations despite their higher overall inbreeding levels. In contrast, there was no such pattern among ten other morphological traits which are primarily naturally selected and presumably not involved in sexual signalling. These results are in line with purging of recessive deleterious alleles, or purging in combination with stochastic fixation of alleles by genetic drift, for a sexual signalling character in the islet environment, which is characterized by low population sizes and strong sexual selection. Higher clutch sizes in islet populations also raise interesting questions regarding the possibility of antagonistic pleiotropy. Purging and other non-exclusive explanations of our results are discussed.
  •  
9.
  • Runemark, Anna, et al. (författare)
  • Island biology and morphological divergence of the Skyros wall lizard Podarcis gaigeae: a combined role for local selection and genetic drift on color morph frequency divergence?
  • 2010
  • Ingår i: BMC Evolutionary Biology. - : Springer Science and Business Media LLC. - 1471-2148. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Patterns of spatial variation in discrete phenotypic traits can be used to draw inferences about the adaptive significance of traits and evolutionary processes, especially when compared to patterns of neutral genetic variation. Population divergence in adaptive traits such as color morphs can be influenced by both local ecology and stochastic factors such as genetic drift or founder events. Here, we use quantitative color measurements of males and females of Skyros wall lizard, Podarcis gaigeae, to demonstrate that this species is polymorphic with respect to throat color, and the morphs form discrete phenotypic clusters with limited overlap between categories. We use divergence in throat color morph frequencies and compare that to neutral genetic variation to infer the evolutionary processes acting on islet- and mainland populations. RESULTS: Geographically close islet- and mainland populations of the Skyros wall lizard exhibit strong divergence in throat color morph frequencies. Population variation in throat color morph frequencies between islets was higher than that between mainland populations, and the effective population sizes on the islets were small (Ne:s < 100). Population divergence (FST) for throat color morph frequencies fell within the neutral FST-distribution estimated from microsatellite markers, and genetic drift could thus not be rejected as an explanation for the pattern. Moreover, for both comparisons among mainland-mainland population pairs and between mainland-islet population pairs, morph frequency divergence was significantly correlated with neutral divergence, further pointing to some role for genetic drift in divergence also at the phenotypic level of throat color morphs. CONCLUSIONS: Genetic drift could not be rejected as an explanation for the pattern of population divergence in morph frequencies. In spite of an expected stabilising selection, throat color frequencies diverged in the islet populations. These results suggest that there is an interaction between selection and genetic drift causing divergence even at a phenotypic level in these small, subdivided populations.
  •  
10.
  • Runemark, Anna, et al. (författare)
  • Vicariance divergence and gene flow among islet populations of an endemic lizard.
  • 2012
  • Ingår i: Molecular Ecology. - 0962-1083. ; 21:1, s. 117-129
  • Tidskriftsartikel (refereegranskat)abstract
    • Allopatry and allopatric speciation can arise through two different mechanisms: vicariance or colonization through dispersal. Distinguishing between these different allopatric mechanisms is difficult and one of the major challenges in biogeographical research. Here, we address whether allopatric isolation in an endemic island lizard is the result of vicariance or dispersal. We estimated the amount and direction of gene flow during the divergence of isolated islet populations and subspecies of the endemic Skyros wall lizard Podarcis gaigeae, a phenotypically variable species that inhabits a major island and small islets in the Greek archipelago. We applied isolation-with-migration models to estimate population divergence times, population sizes and gene flow between islet-mainland population pairs. Divergence times were significantly correlated with independently estimated geological divergence times. This correlation strongly supports a vicariance scenario where islet populations have sequentially become isolated from the major island. We did not find evidence for significant gene flow within P. g. gaigeae. However, gene-flow estimates from the islet to the mainland populations were positively affected by islet area and negatively by distance between the islet and mainland. We also found evidence for gene flow from one subspecies (P. g. weigandi) into another (P. g. gaigeae), but not in the other direction. Ongoing gene flow between the subspecies suggests that even in this geographically allopatric scenario with the sea posing a strong barrier to dispersal, divergence with some gene flow is still feasible.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 15

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy