SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Svensson Jan Olof) ;lar1:(cth)"

Sökning: WFRF:(Svensson Jan Olof) > Chalmers tekniska högskola

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Gillen, Michael, et al. (författare)
  • Effect of a spacer on total systemic and lung bioavailability in healthy volunteers and in vitro performance of the Symbicort® (budesonide/formoterol) pressurized metered dose inhaler
  • 2018
  • Ingår i: Pulmonary Pharmacology and Therapeutics. - : Elsevier BV. - 1094-5539 .- 1522-9629. ; 52, s. 7-17
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: Many patients with chronic obstructive pulmonary disease or asthma experience difficulties in coordinating inhalation with pressurized metered-dose inhaler (pMDI) actuation. The use of a spacer device can improve drug delivery in these patients. The aim of this study was to establish the relative bioavailability of single doses of Symbicort® (budesonide/formoterol) pMDI 160/4.5 μg/actuation (2 actuations) used with and without a spacer device. In addition, an in vitro study was conducted to characterize performance of the inhaler when used in conjunction with a spacer device. Methods: A Phase I, randomized, open-label, single-dose, single-center, crossover study in 50 healthy volunteers (NCT02934607) assessed the relative bioavailability of single-dose Symbicort® pMDI 160/4.5 μg/actuation (2 actuations) with and without a spacer (AeroChamber Plus® Flow-Vu®). Inhaled doses were administered without or with activated charcoal (taken orally) to estimate total systemic exposure and exposure through the lung, respectively. The in vitro study characterized the effect of the spacer with respect to delivered dose, fine particle dose, and dose during simulated breathing of budesonide and formoterol. Results: In terms of total systemic exposure, use of the spacer increased the relative bioavailability determined by AUC(0-last) and Cmax by 68% (spacer:no spacer treatment ratio, 167.9%; 90% CI, 144.1 to 195.6) and 99% (ratio, 198.7%; 90% CI, 164.4 to 240.2) for budesonide, and 77% (ratio, 176.6%; 90% CI, 145.1 to 215.0) and 124% (ratio, 223.6%; 90% CI, 189.9 to 263.3) for formoterol, respectively, compared with pMDI alone. Similarly, the lung exposure of budesonide and formoterol increased (AUC(0-last) and Cmax by 146% [ratio, 246.0%; 90% CI, 200.7 to 301.6] and 127% [ratio, 226.5%; 90% CI, 186.4 to 275.4] for budesonide, and 173% [ratio, 272.8%; 90% CI, 202.5 to 367.4] and 136% [ratio, 236.2%; 90% CI, 192.6 to 289.6] for formoterol, respectively) when the pMDI was administered through the spacer. When assessed by AUC(0-last) quartile without spacer, subjects in the lowest exposure quartile (indicating poor inhalation technique) with Symbicort® pMDI 160/4.5 μg/actuation (2 actuations) had markedly increased total systemic and lung exposure when the same dose was administered with the spacer. In contrast, for subjects in the highest exposure quartile with pMDI alone, total systemic and lung exposure of formoterol and budesonide was similar with and without the spacer. In the in vitro study, the fine particle dose (<5 μm) of both budesonide and formoterol from the spacer at delay time (i.e. pause period after actuation) = 0 s (instantaneous) after actuation was similar to the fine particle dose when not using the spacer. The delivered doses of budesonide and formoterol from the spacer were both lower compared with the doses administered without the spacer. There was also a decrease in delivered dose with increasing delay time. Conclusions: The clinical study demonstrated that in subjects with poor inhalation technique the use of the AeroChamber Plus® Flow-Vu® spacer increased the bioavailability of Symbicort® pMDI to a level observed in subjects with good inhalation technique without a spacer. The findings from the in vitro study support the fine particle dose characteristics of Symbicort® pMDI with the AeroChamber Plus® Flow-Vu® spacer.
  •  
2.
  • Liu, Johan, 1960, et al. (författare)
  • Stem Cell Growth and Migration on Nanofibrous Polymer Scaffolds and Micro-Fluidic Channels on Silicon-Chip
  • 2009
  • Ingår i: Proceedings of the 2009 Electronic Components and Technology Conference. - 0569-5503. - 9781424444762 ; , s. 1080-1085
  • Konferensbidrag (refereegranskat)abstract
    • Stem cell growth and migration on nanofibrous scaffolds and micro-fluidic channels on Silicon-Chip were studied by using neural stem cells isolated from adult rats' brain. Electrospinning and lithographic technique were used for developing nanofibrous-polylactic acid (PLA) and polyurethane (PU) based-scaffolds and micro-fluidic channels on Si-Chips respectively. Immunocytochemical and morphological analysis showed better cell-matrix interaction with profound adhesion, proliferation and migration on the developed scaffolds. Cell culture assay with microfluidic channel revealed the ability of developed channel system in guiding neuronal stem cell growth towards specified directions. These studies extend the possibility of using developed nanofibrous scaffolds and micro-fluidic channel system for future electrical signal transmission based on living neural stem cells.
  •  
3.
  • Moradikouchi, Anis, 1990, et al. (författare)
  • Terahertz Frequency-Domain Sensing Combined with Quantitative Multivariate Analysis for Pharmaceutical Tablet Inspection
  • 2023
  • Ingår i: International Journal of Pharmaceutics. - : Elsevier BV. - 0378-5173 .- 1873-3476. ; 632
  • Tidskriftsartikel (refereegranskat)abstract
    • Near infrared (NIR) and Raman spectroscopy combined with multivariate analysis are established techniques for the identification and quantification of chemical properties of pharmaceutical tablets like the concentration of active pharmaceutical ingredients (API). However, these techniques suffer from a high sensitivity to particle size variations and are not ideal for the characterization of physical properties of tablets such as tablet density. In this work, we have explored the feasibility of terahertz frequency-domain spectroscopy, with the advantage of low scattering effects, combined with multivariate analysis to quantify API concentration and tablet density. We studied 33 tablets, consisting of Ibuprofen, Mannitol, and a lubricant with API concentration and filler particle size as the design factors. The terahertz signal was measured in transmission mode across the frequency range 750 GHz to 1.5 THz using a vector network analyzer, frequency extenders, horn antennas, and four off-axis parabolic mirrors. The attenuation spectral data were pre-processed and orthogonal partial least square (OPLS) regression was applied to the spectral data to obtain quantitative prediction models for API concentration and tablet density. The performance of the models was assessed using test sets. While a fair model was obtained for API concentration, a high-quality model was demonstrated for tablet density. The coefficient of determination (?2) for the calibration set was 0.97 for tablet density and 0.98 for API concentration, while the relative prediction errors for the test set were 0.7% and 6% for tablet density and API concentration models, respectively. In conclusion, terahertz spectroscopy demonstrated to be a complementary technique to Raman and NIR spectroscopy, which enables the characterization of physical properties of tablets like tablet density, and the characterization of API concentration with the advantage of low scattering effects.
  •  
4.
  • Saghaleyni, Rasool, 1987, et al. (författare)
  • Enhanced metabolism and negative regulation of ER stress support higher erythropoietin production in HEK293 cells
  • 2022
  • Ingår i: Cell Reports. - : Elsevier BV. - 2211-1247. ; 39:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Recombinant protein production can cause severe stress on cellular metabolism, resulting in limited titer and product quality. To investigate cellular and metabolic characteristics associated with these limitations, we compare HEK293 clones producing either erythropoietin (EPO) (secretory) or GFP (non-secretory) protein at different rates. Transcriptomic and functional analyses indicate significantly higher metabolism and oxidative phosphorylation in EPO producers compared with parental and GFP cells. In addition, ribosomal genes exhibit specific expression patterns depending on the recombinant protein and the production rate. In a clone displaying a dramatically increased EPO secretion, we detect higher gene expression related to negative regulation of endoplasmic reticulum (ER) stress, including upregulation of ATF6B, which aids EPO production in a subset of clones by overexpression or small interfering RNA (siRNA) knockdown. Our results offer potential target pathways and genes for further development of the secretory power in mammalian cell factories.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy