SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Swietlicki Erik) ;pers:(Stenström Kristina)"

Sökning: WFRF:(Swietlicki Erik) > Stenström Kristina

  • Resultat 1-10 av 15
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Genberg, Johan, et al. (författare)
  • Source apportionment of carbonaceous aerosol in southern Sweden
  • 2011
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 11:22, s. 11387-11400
  • Tidskriftsartikel (refereegranskat)abstract
    • A one-year study was performed at the Vavihill background station in southern Sweden to estimate the anthropogenic contribution to the carbonaceous aerosol. Weekly samples of the particulate matter PM10 were collected on quartz filters, and the amounts of organic carbon, elemental carbon, radiocarbon (14C) and levoglucosan were measured. This approach enabled source apportionment of the total carbon in the PM10 fraction using the concentration ratios of the sources. The sources considered in this study were emissions from the combustion of fossil fuels and biomass, as well as biogenic sources. During the summer, the carbonaceous aerosol mass was dominated by compounds of biogenic origin (80%), which are associated with biogenic primary and secondary organic aerosols. During the winter months, biomass combustion (32%) and fossil fuel combustion (28%) were the main contributors to the carbonaceous aerosol. Elemental carbon concentrations in winter were about twice as large as during summer, and can be attributed to biomass combustion, probably from domestic wood burning. The contribution of fossil fuels to elemental carbon was stable throughout the year, although the fossil contribution to organic carbon increased during the winter. Thus, the organic aerosol originated mainly from natural sources during the summer and from anthropogenic sources during the winter. The result of this source apportionment was compared with results from the EMEP MSC-W chemical transport model. The model and measurements were generally consistent for total atmospheric organic carbon, however, the contribution of the sources varied substantially. E.g. the biomass burning contributions of OC were underestimated by the model by a factor of 2.2 compared to the measurements.
  •  
2.
  • Martinsson, Johan, et al. (författare)
  • Carbonaceous aerosol source apportionment using the Aethalometer model - evaluation by radiocarbon and levoglucosan analysis at a rural background site in southern Sweden
  • 2017
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 17:6, s. 4265-4281
  • Tidskriftsartikel (refereegranskat)abstract
    • With the present demand on fast and inexpensive aerosol source apportionment methods, the Aethalometer model was evaluated for a full seasonal cycle (June 2014June 2015) at a rural atmospheric measurement station in southern Sweden by using radiocarbon and levoglucosan measurements. By utilizing differences in absorption of UV and IR, the Aethalometer model apportions carbon mass into wood burning (WB) and fossil fuel combustion (FF) aerosol. In this study, a small modification in the model in conjunction with carbon measurements from thermal-optical analysis allowed apportioned non-light-absorbing biogenic aerosol to vary in time. The absorption differences between WB and FF can be quantified by the absorption angstrom ngstrom exponent (AAE). In this study AAE(WB) was set to 1.81 and AAE(FF) to 1.0. Our observations show that the AAE was elevated during winter (1.36 +/- 0.07) compared to summer (1.12 +/- 0.07). Quantified WB aerosol showed good agreement with levoglucosan concentrations, both in terms of correlation (R-2 = 0 : 70) and in comparison to reference emission inventories. WB aerosol showed strong seasonal variation with high concentrations during winter (0.65 mu gm(-3), 56% of total carbon) and low concentrations during summer (0.07 mu gm(-3), 6% of total carbon). FF aerosol showed less seasonal dependence; however, black carbon (BC) FF showed clear diurnal patterns corresponding to traffic rush hour peaks. The presumed non-light-absorbing biogenic carbonaceous aerosol concentration was high during summer (1.04 mu gm(-3), 72% of total carbon) and low during winter (0.13 mu gm(-3), 8% of total carbon). Aethalometer model results were further compared to radiocarbon and levoglucosan source apportionment results. The comparison showed good agreement for apportioned mass of WB and biogenic carbonaceous aerosol, but discrepancies were found for FF aerosol mass. The Aethalometer model overestimated FF aerosol mass by a factor of 1.3 compared to radiocarbon and levoglucosan source apportionment. A performed sensitivity analysis suggests that this discrepancy can be explained by interference of non-light-absorbing biogenic carbon during winter. In summary, the Aethalometer model offers a costeffective yet robust high-time-resolution source apportionment at rural background stations compared to a radiocarbon and levoglucosan alternative.
  •  
3.
  •  
4.
  • Azeem, Hafiz Abdul, et al. (författare)
  • Extending the scope of dispersive liquid–liquid microextraction for trace analysis of 3-methyl-1,2,3-butanetricarboxylic acid in atmospheric aerosols leading to the discovery of iron(III) complexes
  • 2019
  • Ingår i: Analytical and Bioanalytical Chemistry. - : Springer Science and Business Media LLC. - 1618-2642 .- 1618-2650. ; 411:13, s. 2937-2944
  • Tidskriftsartikel (refereegranskat)abstract
    • 3-Methyl-1,2,3-butanetricarboxylic acid (MBTCA) is a secondary organic aerosol and can be used as a unique emission marker of biogenic emissions of monoterpenes. Seasonal variations and differences in vegetation cover around the world may lead to low atmospheric MBTCA concentrations, in many cases too low to be measured. Hence, an important tool to quantify the contribution of terrestrial vegetation to the loading of secondary organic aerosol may be compromised. To meet this challenge, a dispersive liquid–liquid microextraction (DLLME) method, known for the extraction of hydrophobic compounds, was extended to the extraction of polar organic compounds like MBTCA without compromising the efficiency of the method. The extraction solvent was fine-tuned using tri-n-octyl phosphine oxide as additive. A multivariate experimental design was applied for deeper understanding of significant variables and interactions between them. The optimum extraction conditions included 1-octanol with 15% tri-n-octyl phosphine oxide (w/w) as extraction solvent, methanol as dispersive solvent, 25% NaCl dissolved in 5 mL sample (w/w) acidified to pH 2 using HNO 3 , and extraction time of 15 min. A limit of detection of 0.12 pg/m 3 in air was achieved. Furthermore, unique complexation behavior of MBTCA with iron(III) was found when analyzed with ultra-high-performance liquid chromatography coupled with electrospray ionization–quadrupole time-of-flight mass spectrometry (UHPLC–ESI–QToF). A comprehensive overview of this complexation behavior of MBTCA was examined with systematically designed experiments. This newly discovered behavior of MBTCA will be of interest for further research on organometallic photooxidation chemistry of atmospheric aerosols. [Figure not available: see fulltext.].
  •  
5.
  • Azeem, Hafiz Abdul, et al. (författare)
  • Towards the isolation and estimation of elemental carbon in atmospheric aerosols using supercritical fluid extraction and thermo-optical analysis
  • 2017
  • Ingår i: Analytical and Bioanalytical Chemistry. - : Springer Science and Business Media LLC. - 1618-2642 .- 1618-2650. ; 409:17, s. 4293-4300
  • Tidskriftsartikel (refereegranskat)abstract
    • Air-starved combustion of biomass and fossil fuels releases aerosols, including airborne carbonaceous particles, causing negative climatic and health effects. Radiocarbon analysis of the elemental carbon (EC) fraction can help apportion sources of its emission, which is greatly constrained by the challenges in isolation of EC from organic compounds in atmospheric aerosols. The isolation of EC using thermo-optical analysis is however biased by the presence of interfering compounds that undergo pyrolysis during the analysis. EC is considered insoluble in all acidic, basic, and organic solvents. Based on the property of insolubility, a sample preparation method using supercritical CO2 and methanol as co-solvent was developed to remove interfering organic compounds. The efficiency of the method was studied by varying the density of supercritical carbon dioxide by means of temperature and pressure and by varying the methanol content. Supercritical CO2 with 10% methanol by volume at a temperature of 60 °C, a pressure of 350 bar and 20 min static mode extraction were found to be the most suitable conditions for the removal of 59 ± 3% organic carbon, including compounds responsible for pyrolysis with 78 ± 16% EC recovery. The results indicate that the method has potential for the estimation and isolation of EC from OC for subsequent analysis methods and source apportionment studies.
  •  
6.
  •  
7.
  •  
8.
  • Martinsson, Johan, et al. (författare)
  • Evaluation of delta C-13 in Carbonaceous Aerosol Source Apportionment at a Rural Measurement Site
  • 2017
  • Ingår i: Aerosol and Air Quality Research. - : Taiwan Association for Aerosol Research. - 1680-8584 .- 2071-1409. ; 17:8, s. 2081-2094
  • Tidskriftsartikel (refereegranskat)abstract
    • The stable isotope of carbon, C-13, has been used in several studies for source characterization of carbonaceous aerosol since there are specific signatures for different sources. In rural areas, the influence of different sources is complex and the application of delta C-13 for source characterization of the total carbonaceous aerosol (TC) can therefore be difficult, especially the separation between biomass burning and biogenic sources. We measured delta C-13 from 25 filter samples collected during one year at a rural background site in southern Sweden. Throughout the year, the measured delta C-13 showed low variability (-26.73 to -25.64%). We found that the measured delta C-13 did not correlate with other commonly used source apportionment tracers (C-14, levoglucosan). delta C-13 values showed lower variability during the cold months compared to the summer, and this narrowing of the delta C-13 values together with elevated levoglucosan concentrations may indicate contribution from sources with lower delta C-13 variation, such as biomass or fossil fuel combustion. Comparison of two Monte Carlo based source apportionment models showed no significant difference in results when delta C-13 was incorporated in the model. The insignificant change of redistributed fraction of carbon between the sources was mainly a consequence of relatively narrow range of delta C-13 values and was complicated by an unaccounted kinetic isotopic effect and overlapping delta C-13 end-member values for biomass burning and biogenic sources.
  •  
9.
  • Martinsson, Johan, et al. (författare)
  • Exploring sources of biogenic secondary organic aerosol compounds using chemical analysis and the FLEXPART model
  • 2017
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 17:18, s. 11025-11040
  • Tidskriftsartikel (refereegranskat)abstract
    • Molecular tracers in secondary organic aerosols (SOAs) can provide information on origin of SOA, as well as regional scale processes involved in their formation. In this study 9 carboxylic acids, 11 organosulfates (OSs) and 2 nitrooxy organosulfates (NOSs) were determined in daily aerosol particle filter samples from Vavihill measurement station in southern Sweden during June and July 2012. Several of the observed compounds are photo-oxidation products from biogenic volatile organic compounds (BVOCs). Highest average mass concentrations were observed for carboxylic acids derived from fatty acids and monoterpenes (12. 3 ± 15. 6 and 13. 8 ± 11. 6 ng mg-3, respectively). The FLEXPART model was used to link nine specific surface types to single measured compounds. It was found that the surface category sea and ocean was dominating the air mass exposure (56 %) but contributed to low mass concentration of observed chemical compounds. A principal component (PC) analysis identified four components, where the one with highest explanatory power (49 %) displayed clear impact of coniferous forest on measured mass concentration of a majority of the compounds. The three remaining PCs were more difficult to interpret, although azelaic, suberic, and pimelic acid were closely related to each other but not to any clear surface category. Hence, future studies should aim to deduce the biogenic sources and surface category of these compounds. This study bridges micro-level chemical speciation to air mass surface exposure at the macro level.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 15

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy