SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Syme B. D.) "

Search: WFRF:(Syme B. D.)

  • Result 1-10 of 23
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Overview of the JET results
  • 2015
  • In: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 55:10
  • Journal article (peer-reviewed)
  •  
2.
  • Romanelli, F, et al. (author)
  • Overview of the JET results
  • 2011
  • In: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 51:9
  • Journal article (peer-reviewed)abstract
    • Since the last IAEA Conference JET has been in operation for one year with a programmatic focus on the qualification of ITER operating scenarios, the consolidation of ITER design choices and preparation for plasma operation with the ITER-like wall presently being installed in JET. Good progress has been achieved, including stationary ELMy H-mode operation at 4.5 MA. The high confinement hybrid scenario has been extended to high triangularity, lower ρ*and to pulse lengths comparable to the resistive time. The steady-state scenario has also been extended to lower ρ*and ν*and optimized to simultaneously achieve, under stationary conditions, ITER-like values of all other relevant normalized parameters. A dedicated helium campaign has allowed key aspects of plasma control and H-mode operation for the ITER non-activated phase to be evaluated. Effective sawtooth control by fast ions has been demonstrated with3He minority ICRH, a scenario with negligible minority current drive. Edge localized mode (ELM) control studies using external n = 1 and n = 2 perturbation fields have found a resonance effect in ELM frequency for specific q95values. Complete ELM suppression has, however, not been observed, even with an edge Chirikov parameter larger than 1. Pellet ELM pacing has been demonstrated and the minimum pellet size needed to trigger an ELM has been estimated. For both natural and mitigated ELMs a broadening of the divertor ELM-wetted area with increasing ELM size has been found. In disruption studies with massive gas injection up to 50% of the thermal energy could be radiated before, and 20% during, the thermal quench. Halo currents could be reduced by 60% and, using argon/deuterium and neon/deuterium gas mixtures, runaway electron generation could be avoided. Most objectives of the ITER-like ICRH antenna have been demonstrated; matching with closely packed straps, ELM resilience, scattering matrix arc detection and operation at high power density (6.2 MW m-2) and antenna strap voltages (42 kV). Coupling measurements are in very good agreement with TOPICA modelling. © 2011 IAEA, Vienna.
  •  
3.
  • Abel, I, et al. (author)
  • Overview of the JET results with the ITER-like wall
  • 2013
  • In: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 53:10, s. 104002-
  • Journal article (peer-reviewed)abstract
    • Following the completion in May 2011 of the shutdown for the installation of the beryllium wall and the tungsten divertor, the first set of JET campaigns have addressed the investigation of the retention properties and the development of operational scenarios with the new plasma-facing materials. The large reduction in the carbon content (more than a factor ten) led to a much lower Z(eff) (1.2-1.4) during L- and H-mode plasmas, and radiation during the burn-through phase of the plasma initiation with the consequence that breakdown failures are almost absent. Gas balance experiments have shown that the fuel retention rate with the new wall is substantially reduced with respect to the C wall. The re-establishment of the baseline H-mode and hybrid scenarios compatible with the new wall has required an optimization of the control of metallic impurity sources and heat loads. Stable type-I ELMy H-mode regimes with H-98,H-y2 close to 1 and beta(N) similar to 1.6 have been achieved using gas injection. ELM frequency is a key factor for the control of the metallic impurity accumulation. Pedestal temperatures tend to be lower with the new wall, leading to reduced confinement, but nitrogen seeding restores high pedestal temperatures and confinement. Compared with the carbon wall, major disruptions with the new wall show a lower radiated power and a slower current quench. The higher heat loads on Be wall plasma-facing components due to lower radiation made the routine use of massive gas injection for disruption mitigation essential.
  •  
4.
  • 2019
  • Journal article (peer-reviewed)
  •  
5.
  • Kiptily, V. G., et al. (author)
  • Fast ion JET diagnostics : Confinement and losses
  • 2008
  • In: BURNING PLASMA DIAGNOSTICS. - : AIP. ; , s. 283-290
  • Conference paper (peer-reviewed)abstract
    • A study of magnetically confined fast ions in tokamaks plays an important role in burning plasma research. To reach ignition and steady burning of a reactor plasma an adequate confinement of energetic ions produced by NBI heating, accelerated with ICRF and born in fusion reactions is essential to provide efficient heating of the bulk plasma. Thus, investigation of the fast ion behaviour is an immediate task for present-day large machines, such as JET, in order to understand the main mechanisms of slowing down, redistribution and losses, and to develop optimal plasma scenarios. Today's JET has an enhanced suite of fast ion diagnostics both of confined and lost ions that enable to significantly contribute to this important area of research. Fast ion populations of p, d, t, 3He and 4He, made with ICRF, NBI, and fusion reactions have been investigated in experiments on JET with sophisticated diagnostics in conventional and shear-reversed plasmas, exploring a wide range of effects. This paper will introduce to the JET fast-ion diagnostic techniques and will give an overview of recent observations. A synergy of the unique diagnostic set was utilised in JET, and studies of the response of fast ions to MHD modes (e.g. tornado modes, sawtooth crashes), fast 3He-ions behaviour in shear-reversed plasmas are impressive examples of that. Some results on fast ion losses in JET experiments with various levels of the toroidal field ripple will be demonstrated.
  •  
6.
  • Weisen, H., et al. (author)
  • The 'neutron deficit' in the JET tokamak
  • 2017
  • In: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 57:7
  • Journal article (peer-reviewed)abstract
    • The measured D-D neutron rate of neutral beam heated JET baseline and hybrid H-modes in deuterium is found to be between approximately 50% and 100% of the neutron rate expected from the TRANSP code, depending on the plasma parameters. A number of candidate explanations for the shortfall, such as fuel dilution, errors in beam penetration and effectively available beam power have been excluded. As the neutron rate in JET is dominated by beamplasma interactions, the ` neutron deficit' may be caused by a yet unidentified form of fast particle redistribution. Modelling, which assumes fast particle transport to be responsible for the deficit, indicates that such redistribution would have to happen at time scales faster than both the slowing down time and the energy confinement time. Sawteeth and edge localised modes are found to make no significant contribution to the deficit. There is also no obvious correlation with magnetohydrodynamic activity measured using magnetic probes at the tokamak vessel walls. Modelling of fast particle orbits in the 3D fields of neoclassical tearing modes shows that realistically sized islands can only contribute a few percent to the deficit. In view of these results it appears unlikely that the neutron deficit results from a single physical process in the plasma.
  •  
7.
  • Kiptily, V. G., et al. (author)
  • Fusion Alpha-Particle Diagnostics for DT Experiments on the Joint European Torus
  • 2014
  • In: FUSION REACTOR DIAGNOSTICS. - : AIP Publishing LLC. ; , s. 87-92
  • Conference paper (peer-reviewed)abstract
    • JET equipped with ITER-like wall (a beryllium wall and a tungsten divertor) can provide auxiliary heating with power up to 35MW, producing a significant population of alpha-particles in DT operation. The direct measurements of alphas are very difficult and alpha-particle studies require a significant development of dedicated diagnostics. JET now has an excellent set of confined and lost fast particle diagnostics for measuring the alpha-particle source and its evolution in space and time, alpha-particle energy distribution, and alpha-particle losses. This paper describes how the above mentioned JET diagnostic systems could be used for alpha-particle measurements, and what options exist for keeping the essential alpha-particle diagnostics functioning well in the presence of intense DT neutron flux. Also, alpha-particle diagnostics for ITER are discussed.
  •  
8.
  • Kiptily, V. G., et al. (author)
  • Recent progress in fast ion studies on JET
  • 2009
  • In: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 49:6
  • Journal article (peer-reviewed)abstract
    • This paper presents recent results on fast ion studies on JET. A set of diagnostics for both confined and lost fast ions was employed for investigating the response of fast ions to MHD modes and for studying their behaviour in plasmas with toroidal field ripple and in shear-reversed plasmas. A dependence of the losses on MHD mode amplitude was deduced from the experimental data. A study of various plasma scenarios has shown that a significant redistribution of the fast ions happens during changes in the profile of the safety factor from shear-reversed to monotonic. Significant changes in the losses of ICRH accelerated protons were found to be associated with L-H confinement transitions in plasmas. After an L-H transition, an abrupt decrease in the ICRH proton losses was observed. In plasmas with an internal transport barrier, the loss of ICRH accelerated ions was found to increase as the barrier forms. Further results concerning fast ion losses were obtained during JET experiments in which the magnitude of the TF ripple was varied. The ripple losses of fusion products appear similar to classical losses, and are in agreement with modelling.
  •  
9.
  •  
10.
  • Bellenguez, Celine, et al. (author)
  • Genome-wide association study identifies a variant in HDAC9 associated with large vessel ischemic stroke
  • 2012
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 44:3, s. 141-328
  • Journal article (peer-reviewed)abstract
    • Genetic factors have been implicated in stroke risk, but few replicated associations have been reported. We conducted a genome-wide association study (GWAS) for ischemic stroke and its subtypes in 3,548 affected individuals and 5,972 controls, all of European ancestry. Replication of potential signals was performed in 5,859 affected individuals and 6,281 controls. We replicated previous associations for cardioembolic stroke near PITX2 and ZFHX3 and for large vessel stroke at a 9p21 locus. We identified a new association for large vessel stroke within HDAC9 (encoding histone deacetylase 9) on chromosome 7p21.1 (including further replication in an additional 735 affected individuals and 28,583 controls) (rs11984041; combined P = 1.87 x 10(-11); odds ratio (OR) = 1.42, 95% confidence interval (CI) = 1.28-1.57). All four loci exhibited evidence for heterogeneity of effect across the stroke subtypes, with some and possibly all affecting risk for only one subtype. This suggests distinct genetic architectures for different stroke subtypes.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 23

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view