SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Syvänen Ann Christine) ;pers:(Rantapää Dahlqvist Solbritt)"

Sökning: WFRF:(Syvänen Ann Christine) > Rantapää Dahlqvist Solbritt

  • Resultat 1-10 av 24
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Leonard, Dag, et al. (författare)
  • Coronary Heart Disease in Systemic Lupus Erythematosus Is Associated With Interferon Regulatory Factor-8 Gene Variants
  • 2013
  • Ingår i: Circulation: Cardiovascular Genetics. - : BMJ. - 1942-325X .- 1942-3268. ; 72:Suppl. 3, s. 270-270
  • Tidskriftsartikel (refereegranskat)abstract
    • Background- Patients with systemic lupus erythematosus have increased morbidity and mortality in coronary heart disease (CHD). We asked whether there was a genetic influence on CHD in systemic lupus erythematosus. Methods and Results- The association between single-nucleotide polymorphisms (SNPs) and CHD in 2 populations of patients with systemic lupus erythematosus was assessed. Patients were genotyped on a custom 12k Illumina Array. The allele frequencies were compared between patients with (n=66) and without (n=509) CHD. We found 61 SNPs with an association (P<0.01) to CHD, with the strongest association for 3 SNPs located in the interferon regulatory factor-8 (IRF8) gene. Comparison of the allele frequencies of these 61 SNPs in patients with (n=27) and without (n=212) CHD in the second study population revealed that 2 SNPs, rs925994 and rs10514610 in IRF8 (linkage disequilibrium, r(2)=0.84), were associated with CHD in both study populations. Meta-analysis of the SNP rs925994 gave an odds ratio of 3.6 (2.1-6.3), P value 1.9x10(-6). The identified IRF8 allele remained as a risk factor for CHD after adjustment for traditional CHD risk factors. The IRF8 risk allele was associated with the presence of carotid plaques (P<0.001) and increased intima-media thickness (P=0.01). By electrophoretic mobility shift assays, we show weaker binding of protein to the risk allele of the highly linked SNP rs11117415, and by flow cytometry, a reduced frequency of circulating B cells was detected in patients with the IRF8 risk allele. Conclusions- There is a considerable genetic component for CHD in systemic lupus erythematosus, with IRF8 as a strong susceptibility locus.
  •  
2.
  • Leonard, Dag, 1975-, et al. (författare)
  • Novel gene variants associated with cardiovascular disease in systemic lupus erythematosus and rheumatoid arthritis.
  • 2018
  • Ingår i: Annals of the Rheumatic Diseases. - : BMJ. - 0003-4967 .- 1468-2060. ; 77:7, s. 1063-1069
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVES: Patients with systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA) have increased risk of cardiovascular disease (CVD). We investigated whether single nucleotide polymorphisms (SNPs) at autoimmunity risk loci were associated with CVD in SLE and RA.METHODS: Patients with SLE (n=1045) were genotyped using the 200K Immunochip SNP array (Illumina). The allele frequency was compared between patients with and without different manifestations of CVD. Results were replicated in a second SLE cohort (n=1043) and in an RA cohort (n=824). We analysed publicly available genetic data from general population, performed electrophoretic mobility shift assays and measured cytokine levels and occurrence of antiphospholipid antibodies (aPLs).RESULTS: We identified two new putative risk loci associated with increased risk for CVD in two SLE populations, which remained after adjustment for traditional CVD risk factors. An IL19 risk allele, rs17581834(T) was associated with stroke/myocardial infarction (MI) in SLE (OR 2.3 (1.5 to 3.4), P=8.5×10-5) and RA (OR 2.8 (1.4 to 5.6), P=3.8×10-3), meta-analysis (OR 2.5 (2.0 to 2.9), P=3.5×10-7), but not in population controls. The IL19 risk allele affected protein binding, and SLE patients with the risk allele had increased levels of plasma-IL10 (P=0.004) and aPL (P=0.01). An SRP54-AS1 risk allele, rs799454(G) was associated with stroke/transient ischaemic attack in SLE (OR 1.7 (1.3 to 2.2), P=2.5×10-5) but not in RA. The SRP54-AS1 risk allele is an expression quantitative trait locus for four genes.CONCLUSIONS: The IL19 risk allele was associated with stroke/MI in SLE and RA, but not in the general population, indicating that shared immune pathways may be involved in the CVD pathogenesis in inflammatory rheumatic diseases.
  •  
3.
  • Reid, Sarah, et al. (författare)
  • High genetic risk score is associated with early disease onset, damage accrual and decreased survival in systemic lupus erythematosus
  • 2020
  • Ingår i: Annals of the Rheumatic Diseases. - : BMJ Publishing Group Ltd. - 0003-4967 .- 1468-2060. ; 79:3, s. 363-369
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVES: To investigate associations between a high genetic disease risk and disease severity in patients with systemic lupus erythematosus (SLE).METHODS: Patients with SLE (n=1001, discovery cohort and n=5524, replication cohort) and healthy controls (n=2802 and n=9859) were genotyped using a 200K Immunochip single nucleotide polymorphism array. A genetic risk score (GRS) was assigned to each individual based on 57 SLE risk loci.RESULTS: SLE was more prevalent in the high, compared with the low, GRS-quartile (OR 12.32 (9.53 to 15.71), p=7.9×10-86 and OR 7.48 (6.73 to 8.32), p=2.2×10-304 for the discovery and the replication cohorts, respectively). In the discovery cohort, patients in the high GRS-quartile had a 6-year earlier mean disease onset (HR 1.47 (1.22 to 1.75), p=4.3×10-5), displayed higher prevalence of damage accrual (OR 1.47 (1.06 to 2.04), p=2.0×10-2), renal disorder (OR 2.22 (1.50 to 3.27), p=5.9×10-5), anti-dsDNA (OR 1.83 (1.19 to 2.81), p=6.1×10-3), end-stage renal disease (ESRD) (OR 5.58 (1.50 to 20.79), p=1.0×10-2), proliferative nephritis (OR 2.42 (1.30 to 4.49), p=5.1×10-3), anti-cardiolipin-IgG (OR 1.89 (1.13 to 3.18), p=1.6×10-2), anti-β2-glycoprotein-I-IgG (OR 2.29 (1.29 to 4.06), p=4.8×10-3) and positive lupus anticoagulant test (OR 2.12 (1.16 to 3.89), p=1.5×10-2) compared with patients in the low GRS-quartile. Survival analysis showed earlier onset of the first organ damage (HR 1.51 (1.04 to 2.25), p=3.7×10-2), first cardiovascular event (HR 1.65 (1.03 to 2.64), p=2.6×10-2), nephritis (HR 2.53 (1.72 to 3.71), p=9.6×10-7), ESRD (HR 6.78 (1.78 to 26.86), p=6.5×10-3) and decreased overall survival (HR 1.83 (1.02 to 3.30), p=4.3×10-2) in high to low quartile comparison.CONCLUSIONS: A high GRS is associated with increased risk of organ damage, renal dysfunction and all-cause mortality. Our results indicate that genetic profiling may be useful for predicting outcomes in patients with SLE.
  •  
4.
  • Reid, Sarah, et al. (författare)
  • High Genetic Risk Score Is Associated with Increased Organ Damage in SLE
  • 2017
  • Ingår i: Arthritis & Rheumatology. - : John Wiley & Sons. - 2326-5191 .- 2326-5205. ; 69
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Background/Purpose: Systemic lupus erythematosus (SLE) is a chronic, autoimmune disease with a complex genetic etiology. Over 80 risk genes for SLE have been identified and some genetic variants have demonstrated association with specific disease manifestations, such as STAT4 and nephritis. The overall effect of a patient’s hereditary risk factors on disease severity has so far not been studied. We therefore assessed the relationship between high genetic risk and development of organ damage in SLE.Methods: Patients with SLE, who met at least 4 ACR criteria (n = 1012), were genotyped using a 200K Immunochip SNP Array (Illumina). A genetic risk score (GRS) was assigned to each patient based on the single nucleotide polymorphisms (SNPs) which in previous studies have shown association (p<5×10-8) with SLE according to Morris, et al (Nat Genet, 2016. 48(8): p. 940-6). For 32 loci the SLE GWAS SNP was available on the ImmunoChip. For each SNP, the natural logarithm of the odds ratio (OR) for SLE susceptibility was multiplied by the number of risk alleles in each individual. The sum of all products for each patient was defined as the GRS. Information regarding organ damage according to Systemic Lupus International Collaborating Clinics / American College of Rheumatology Damage Index (SLICC-DI), disease manifestations, antibody profile, medication, current disease activity, age at diagnosis and sex was retrieved from medical records. Statistical analyzes were performed using Statistica 13.2 (Statsoft).Results: In an ordinal regression model, with SLICC-DI (0, 1, 2, 3, 4 and >4 points) as outcome and age and GRS as independent variables, an association was found between GRS and SLICC-DI (OR1.16 (1.03-1.31), p=0.015). The relationship was more pronounced for patients under 60 years of age (OR1.30 (1.11-1.52) p=7.1×10-4). Using a linear regression model, a negative relationship was observed between GRS and age at diagnosis (β = -0.13, p=1.5×10-5).When analyzing the 11 SLE criteria (ACR-82) using a logistic regression model associations were observed between GRS and nephritis (OR 1.26 (1.09-1.45), p=0.0015), the immunological criteria (OR 1.31 (1.13-1.51), p = 3.2×10-4) and arthritis (OR 0.84 (0.71-1.00), p=0.044). A high GRS was also associated with presence of anti-dsDNA (OR 1.37 (1.15-1.62), p=9.4×10-7) and low complement levels (OR 1.32 (1.03-1.68), p=0.044). No association was observed between GRS and disease activity at the time of follow-up and there was no difference in GRS between men and women with SLE.Conclusion: In patients with SLE, there is an association between a high genetic risk score and early disease onset. In addition, patients with high genetic risk scores have a higher risk of developing permanent organ damage compared to individuals with fewer risk genes. Our findings indicate that genetic profiling of patients with SLE may provide a tool for predicting severity of the disease.
  •  
5.
  • Sandling, Johanna K., et al. (författare)
  • Molecular pathways in patients with systemic lupus erythematosus revealed by gene-centred DNA sequencing
  • 2021
  • Ingår i: Annals of the Rheumatic Diseases. - : BMJ. - 0003-4967 .- 1468-2060. ; 80:1, s. 109-117
  • Tidskriftsartikel (refereegranskat)abstract
    • Objectives: Systemic lupus erythematosus (SLE) is an autoimmune disease with extensive heterogeneity in disease presentation between patients, which is likely due to an underlying molecular diversity. Here, we aimed at elucidating the genetic aetiology of SLE from the immunity pathway level to the single variant level, and stratify patients with SLE into distinguishable molecular subgroups, which could inform treatment choices in SLE. Methods: We undertook a pathway-centred approach, using sequencing of immunological pathway genes. Altogether 1832 candidate genes were analysed in 958 Swedish patients with SLE and 1026 healthy individuals. Aggregate and single variant association testing was performed, and we generated pathway polygenic risk scores (PRS). Results: We identified two main independent pathways involved in SLE susceptibility: T lymphocyte differentiation and innate immunity, characterised by HLA and interferon, respectively. Pathway PRS defined pathways in individual patients, who on average were positive for seven pathways. We found that SLE organ damage was more pronounced in patients positive for the T or B cell receptor signalling pathways. Further, pathway PRS-based clustering allowed stratification of patients into four groups with different risk score profiles. Studying sets of genes with priors for involvement in SLE, we observed an aggregate common variant contribution to SLE at genes previously reported for monogenic SLE as well as at interferonopathy genes. Conclusions: Our results show that pathway risk scores have the potential to stratify patients with SLE beyond clinical manifestations into molecular subsets, which may have implications for clinical follow-up and therapy selection.
  •  
6.
  • Sigurdsson, S, et al. (författare)
  • Polymorphisms in the tyrosine kinase 2 and interferon regulatory factor 5 genes are associated with systemic lupus erythematosus
  • 2005
  • Ingår i: American Journal of Human Genetics. - : Elsevier BV. - 0002-9297 .- 1537-6605. ; 76:3, s. 528-37
  • Tidskriftsartikel (refereegranskat)abstract
    • Systemic lupus erythematosus (SLE) is a complex systemic autoimmune disease caused by both genetic and environmental factors. Genome scans in families with SLE point to multiple potential chromosomal regions that harbor SLE susceptibility genes, and association studies in different populations have suggested several susceptibility alleles for SLE. Increased production of type I interferon (IFN) and expression of IFN-inducible genes is commonly observed in SLE and may be pivotal in the molecular pathogenesis of the disease. We analyzed 44 single-nucleotide polymorphisms ( SNPs) in 13 genes from the type I IFN pathway in 679 Swedish, Finnish, and Icelandic patients with SLE, in 798 unaffected family members, and in 438 unrelated control individuals for joint linkage and association with SLE. In two of the genes - the tyrosine kinase 2 (TYK2) and IFN regulatory factor 5 (IRF5) genes - we identified SNPs that displayed strong signals in joint analysis of linkage and association (unadjusted P < 10(-7)) with SLE. TYK2 binds to the type I IFN receptor complex and IRF5 is a regulator of type I IFN gene expression. Thus, our results support a disease mechanism in SLE that involves key components of the type I IFN system.
  •  
7.
  • Bolin, Karin, 1982-, et al. (författare)
  • Variants in BANK1 are associated with lupus nephritis
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Background: Lupus nephritis (LN) is a cause of significant morbidity in SLE. While the genetic background to SLE has been well characterized, less is known about genes predisposing to LN.Methods: The study consisted of 2886 SLE patients, including 947 (33%) with LN. The discovery cohort (Sweden, n=1091) and replication cohort 1 (US, n=962) were genotyped on the Immunochip and replication cohort 2 (Norway/Denmark, n=833) on a custom array chip. Allele frequencies were compared between patients with LN, proliferative nephritis, end-stage renal disease and LN negative patients. SNPs with p-value <0.001 in the discovery cohort were analyzed in replication cohort 1. Ten SNPs associated with LN in the discovery cohort (p<0.0002) were genotyped in replication cohort 2. DNA methylation data were available for 180 LN patients from the discovery cohort.Results: In the discovery cohort, six gene loci were associated with LN (p<1x10-4, NFKBIA, CACNA1S, ITGA1, BANK1, OR2Y and PHCA). SNPs in BANK1 showed the strongest association with LN in replication cohort 1 (p=9.5x10-4), with a tendency for an association in replication cohort 2 (p=0.052). In a meta-analysis of all three cohorts the association between LN and BANK1 rs4699259, was strengthened (p=1.7x10‑7). There were no associations to proliferative nephritis or ESRD in the meta-analysis. Methylation quantitative trait loci (MeQTL) effects between a CpG site and several SNPs in BANK1 were identified.Conclusion: Genetic variations in BANK1 are associated with LN. There is evidence for genetic regulation of DNA methylation within the BANK1 locus, however, the exact role of BANK1 in LN pathogenesis remains to be elucidated.
  •  
8.
  • Bolin, Karin, et al. (författare)
  • Variants in BANK1 are associated with lupus nephritis of European ancestry
  • 2021
  • Ingår i: Genes and Immunity. - : Springer Nature. - 1466-4879 .- 1476-5470. ; 22:3, s. 194-202
  • Tidskriftsartikel (refereegranskat)abstract
    • The genetic background of lupus nephritis (LN) has not been completely elucidated. We performed a case-only study of 2886 SLE patients, including 947 (33%) with LN. Renal biopsies were available from 396 patients. The discovery cohort (Sweden, n = 1091) and replication cohort 1 (US, n = 962) were genotyped on the Immunochip and replication cohort 2 (Denmark/Norway, n = 833) on a custom array. Patients with LN, proliferative nephritis, or LN with end-stage renal disease were compared with SLE without nephritis. Six loci were associated with LN (p < 1 × 10−4, NFKBIA, CACNA1S, ITGA1, BANK1, OR2Y, and ACER3) in the discovery cohort. Variants in BANK1 showed the strongest association with LN in replication cohort 1 (p = 9.5 × 10−4) and proliferative nephritis in a meta-analysis of discovery and replication cohort 1. There was a weak association between BANK1 and LN in replication cohort 2 (p = 0.052), and in the meta-analysis of all three cohorts the association was strengthened (p = 2.2 × 10−7). DNA methylation data in 180 LN patients demonstrated methylation quantitative trait loci (meQTL) effects between a CpG site and BANK1 variants. To conclude, we describe genetic variations in BANK1 associated with LN and evidence for genetic regulation of DNA methylation within the BANK1 locus. This indicates a role for BANK1 in LN pathogenesis.
  •  
9.
  • Farias, Fabiana H. G., et al. (författare)
  • A rare regulatory variant in the MEF2D gene affects gene regulation and splicing and is associated with a SLE sub-phenotype in Swedish cohorts
  • 2019
  • Ingår i: European Journal of Human Genetics. - : Springer Science and Business Media LLC. - 1018-4813 .- 1476-5438. ; 27, s. 432-441
  • Tidskriftsartikel (refereegranskat)abstract
    • Systemic lupus erythematosus (SLE) is an autoimmune disorder with heterogeneous clinical presentation and complex etiology involving the interplay between genetic, epigenetic, environmental and hormonal factors. Many common SNPs identified by genome wide-association studies (GWAS) explain only a small part of the disease heritability suggesting the contribution from rare genetic variants, undetectable in GWAS, and complex epistatic interactions. Using targeted re-sequencing of coding and conserved regulatory regions within and around 215 candidate genes selected on the basis of their known role in autoimmunity and genes associated with canine immune-mediated diseases, we identified a rare regulatory variant rs200395694:G > T located in intron 4 of the MEF2D gene encoding the myocyte-specific enhancer factor 2D transcription factor and associated with SLE in Swedish cohorts (504 SLE patients and 839 healthy controls, p = 0.014, CI = 1.1-10). Fisher's exact test revealed an association between the genetic variant and a triad of disease manifestations including Raynaud, anti-U1-ribonucleoprotein (anti-RNP), and anti-Smith (anti-Sm) antibodies (p = 0.00037) among the patients. The DNA-binding activity of the allele was further studied by EMSA, reporter assays, and minigenes. The region has properties of an active cell-specific enhancer, differentially affected by the alleles of rs200395694:G > T. In addition, the risk allele exerts an inhibitory effect on the splicing of the alternative tissue-specific isoform, and thus may modify the target gene set regulated by this isoform. These findings emphasize the potential of dissecting traits of complex diseases and correlating them with rare risk alleles with strong biological effects.
  •  
10.
  • Gateva, Vesela, et al. (författare)
  • A large-scale replication study identifies TNIP1, PRDM1, JAZF1, UHRF1BP1 and IL10 as risk loci for systemic lupus erythematosus
  • 2009
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 41:11, s. 1228-1233
  • Tidskriftsartikel (refereegranskat)abstract
    • Genome-wide association studies have recently identified at least 15 susceptibility loci for systemic lupus erythematosus (SLE). To confirm additional risk loci, we selected SNPs from 2,466 regions that showed nominal evidence of association to SLE (P < 0.05) in a genome-wide study and genotyped them in an independent sample of 1,963 cases and 4,329 controls. This replication effort identified five new SLE susceptibility loci (P < 5 x 10(-8)): TNIP1 (odds ratio (OR) = 1.27), PRDM1 (OR = 1.20), JAZF1 (OR = 1.20), UHRF1BP1 (OR = 1.17) and IL10 (OR = 1.19). We identified 21 additional candidate loci with P< or = 1 x 10(-5). A candidate screen of alleles previously associated with other autoimmune diseases suggested five loci (P < 1 x 10(-3)) that may contribute to SLE: IFIH1, CFB, CLEC16A, IL12B and SH2B3. These results expand the number of confirmed and candidate SLE susceptibility loci and implicate several key immunologic pathways in SLE pathogenesis.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 24
Typ av publikation
tidskriftsartikel (21)
annan publikation (3)
Typ av innehåll
refereegranskat (19)
övrigt vetenskapligt/konstnärligt (5)
Författare/redaktör
Rönnblom, Lars (22)
Gunnarsson, Iva (21)
Sandling, Johanna K. (20)
Svenungsson, Elisabe ... (19)
Jönsen, Andreas (19)
visa fler...
Eloranta, Maija-Leen ... (15)
Nordmark, Gunnel (14)
Syvänen, Ann-Christi ... (13)
Bengtsson, Anders A. (12)
Leonard, Dag, 1975- (11)
Syvänen, Ann-Christi ... (11)
Sjöwall, Christopher (11)
Bengtsson, Anders (9)
Padyukov, Leonid (9)
Sturfelt, Gunnar (8)
Alexsson, Andrei (7)
Criswell, Lindsey A. (7)
Truedsson, Lennart (6)
Wang, Chuan (6)
Bengtsson, Christine (5)
Sigurdsson, Snaevar (4)
Imgenberg-Kreuz, Jul ... (4)
Kozyrev, Sergey V. (3)
Dahlqvist, Johanna, ... (3)
Lindblad-Toh, Kersti ... (3)
Gregersen, Peter K. (3)
Eriksson, Catharina (3)
Jacobsen, Søren (3)
Almlöf, Jonas Carlss ... (3)
Seldin, Michael F (3)
Farias, Fabiana H. G ... (2)
Tandre, Karolina (2)
Carlsson Almlöf, Jon ... (2)
Brown, Elizabeth E. (2)
Ramsey-Goldman, Rosa ... (2)
Reveille, John D. (2)
Vila, Luis M. (2)
Edberg, Jeffrey C. (2)
Kimberly, Robert P. (2)
Ahlford, Annika (2)
Hamsten, Anders (2)
Petri, Michelle (2)
Manzi, Susan (2)
Alarcón, Graciela S. (2)
Pucholt, Pascal (2)
Kosoy, Roman (2)
Bianchi, Matteo (2)
Omdal, Roald (2)
Jonsson, Roland (2)
visa färre...
Lärosäte
Uppsala universitet (23)
Umeå universitet (21)
Karolinska Institutet (20)
Lunds universitet (17)
Linköpings universitet (10)
Sveriges Lantbruksuniversitet (2)
visa fler...
Göteborgs universitet (1)
visa färre...
Språk
Engelska (24)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (24)
Naturvetenskap (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy