SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Tabrizi R) ;lar1:(lu)"

Sökning: WFRF:(Tabrizi R) > Lunds universitet

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Björkqvist, Maria, et al. (författare)
  • A novel pathogenic pathway of immune activation detectable before clinical onset in Huntington's disease.
  • 2008
  • Ingår i: Journal of Experimental Medicine. - : Rockefeller University Press. - 1540-9538 .- 0022-1007. ; 205, s. 1869-1877
  • Tidskriftsartikel (refereegranskat)abstract
    • Huntington's disease (HD) is an inherited neurodegenerative disorder characterized by both neurological and systemic abnormalities. We examined the peripheral immune system and found widespread evidence of innate immune activation detectable in plasma throughout the course of HD. Interleukin 6 levels were increased in HD gene carriers with a mean of 16 years before the predicted onset of clinical symptoms. To our knowledge, this is the earliest plasma abnormality identified in HD. Monocytes from HD subjects expressed mutant huntingtin and were pathologically hyperactive in response to stimulation, suggesting that the mutant protein triggers a cell-autonomous immune activation. A similar pattern was seen in macrophages and microglia from HD mouse models, and the cerebrospinal fluid and striatum of HD patients exhibited abnormal immune activation, suggesting that immune dysfunction plays a role in brain pathology. Collectively, our data suggest parallel central nervous system and peripheral pathogenic pathways of immune activation in HD.
  •  
2.
  • Träger, Ulrike, et al. (författare)
  • Characterisation of immune cell function in fragment and full-length Huntington's disease mouse models.
  • 2015
  • Ingår i: Neurobiology of Disease. - : Elsevier BV. - 0969-9961. ; 73, s. 388-398
  • Tidskriftsartikel (refereegranskat)abstract
    • Inflammation is a growing area of research in neurodegeneration. In Huntington's disease (HD), a fatal inherited neurodegenerative disease caused by a CAG-repeat expansion in the gene encoding huntingtin, patients have increased plasma levels of inflammatory cytokines and circulating monocytes that are hyper-responsive to immune stimuli. Several mouse models of HD also show elevated plasma levels of inflammatory cytokines. To further determine the degree to which these models recapitulate observations in HD patients, we evaluated various myeloid cell populations from different HD mouse models to determine whether they are similarly hyper-responsive, as well as measuring other aspects of myeloid cell function. Myeloid cells from each of the three mouse models studied, R6/2, HdhQ150 knock-in and YAC128, showed increased cytokine production when stimulated. However, bone marrow CD11b(+) cells did not show the same hyper-responsive phenotype as spleen and blood cells. Furthermore, macrophages isolated from R6/2 mice show increased levels of phagocytosis, similar to findings in HD patients. Taken together, these results show significant promise for these mouse models to be used to study targeting innate immune pathways identified in human cells, thereby helping to understand the role the peripheral immune system plays in HD progression.
  •  
3.
  • Dalrymple, Annette, et al. (författare)
  • Proteomic profiling of plasma in Huntington's disease reveals neuroinflammatory activation and biomarker candidates
  • 2007
  • Ingår i: Journal of Proteome Research. - : American Chemical Society (ACS). - 1535-3893 .- 1535-3907. ; 6:7, s. 2833-2840
  • Tidskriftsartikel (refereegranskat)abstract
    • Huntington's disease (HD) causes widespread CNS changes and systemic abnormalities including endocrine and immune dysfunction. HD biomarkers are needed to power clinical trials of potential treatments. We used multiplatform proteomic profiling to reveal plasma changes with HD progression. Proteins of interest were evaluated using immunoblotting and ELISA in plasma from 2 populations, CSF and R6/2 mice. The identified proteins demonstrate neuroinflammation in HD and warrant further investigation as possible biomarkers.
  •  
4.
  • Mazzola, F., et al. (författare)
  • Simultaneous Conduction and Valence Band Quantization in Ultrashallow High-Density Doping Profiles in Semiconductors
  • 2018
  • Ingår i: Physical Review Letters. - 0031-9007. ; 120:4
  • Tidskriftsartikel (refereegranskat)abstract
    • We demonstrate simultaneous quantization of conduction band (CB) and valence band (VB) states in silicon using ultrashallow, high-density, phosphorus doping profiles (so-called Si:P δ layers). We show that, in addition to the well-known quantization of CB states within the dopant plane, the confinement of VB-derived states between the subsurface P dopant layer and the Si surface gives rise to a simultaneous quantization of VB states in this narrow region. We also show that the VB quantization can be explained using a simple particle-in-a-box model, and that the number and energy separation of the quantized VB states depend on the depth of the P dopant layer beneath the Si surface. Since the quantized CB states do not show a strong dependence on the dopant depth (but rather on the dopant density), it is straightforward to exhibit control over the properties of the quantized CB and VB states independently of each other by choosing the dopant density and depth accordingly, thus offering new possibilities for engineering quantum matter.
  •  
5.
  • Traeger, Ulrike, et al. (författare)
  • HTT-lowering reverses Huntington's disease immune dysfunction caused by NF kappa B pathway dysregulation
  • 2014
  • Ingår i: Brain. - : Oxford University Press (OUP). - 1460-2156 .- 0006-8950. ; 137, s. 819-833
  • Tidskriftsartikel (refereegranskat)abstract
    • Huntington's disease is an inherited neurodegenerative disorder caused by a CAG repeat expansion in the huntingtin gene. The peripheral innate immune system contributes to Huntington's disease pathogenesis and has been targeted successfully to modulate disease progression, but mechanistic understanding relating this to mutant huntingtin expression in immune cells has been lacking. Here we demonstrate that human Huntington's disease myeloid cells produce excessive inflammatory cytokines as a result of the cell-intrinsic effects of mutant huntingtin expression. A direct effect of mutant huntingtin on the NF kappa B pathway, whereby it interacts with IKK gamma, leads to increased degradation of I kappa B and subsequent nuclear translocation of RelA. Transcriptional alterations in intracellular immune signalling pathways are also observed. Using a novel method of small interfering RNA delivery to lower huntingtin expression, we show reversal of disease-associated alterations in cellular function-the first time this has been demonstrated in primary human cells. Glucan-encapsulated small interfering RNA particles were used to lower huntingtin levels in human Huntington's disease monocytes/macrophages, resulting in a reversal of huntingtin-induced elevated cytokine production and transcriptional changes. These findings improve our understanding of the role of innate immunity in neurodegeneration, introduce glucan-encapsulated small interfering RNA particles as tool for studying cellular pathogenesis ex vivo in human cells and raise the prospect of immune cell-directed HTT-lowering as a therapeutic in Huntington's disease.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy