Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Tabuchi Arata) "

Sökning: WFRF:(Tabuchi Arata)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
  • Fung, Yoke Lin, et al. (författare)
  • Recipient T lymphocytes modulate the severity of antibody-mediated transfusion-related acute lung injury
  • 2010
  • Ingår i: Blood. - American Society of Hematology. - 1528-0020. ; 116:16, s. 9-3073
  • Tidskriftsartikel (refereegranskat)abstract
    • Transfusion-related acute lung injury (TRALI) is a serious complication of transfusion and has been ranked as one of the leading causes of transfusion-related fatalities. Nonetheless, many details of the immunopathogenesis of TRALI, particularly with respect to recipient factors are unknown. We used a murine model of antibody-mediated TRALI in an attempt to understand the role that recipient lymphocytes might play in TRALI reactions. Intravenous injection of an IgG2a antimurine major histocompatibility complex class I antibody (34-1-2s) into BALB/c mice induced moderate hypothermia and pulmonary granulocyte accumulation but no pulmonary edema nor mortality. In contrast, 34-1-2s injections into mice with severe combined immunodeficiency caused severe hypothermia, severe pulmonary edema, and approximately 40% mortality indicating a critical role for T and B lymphocytes in suppressing TRALI reactions. Adoptive transfer of purified CD8(+) T lymphocytes or CD4(+) T cells but not CD19(+) B cells into the severe combined immunodeficiency mice alleviated the antibody-induced hypothermia, lung damage, and mortality, suggesting that T lymphocytes were responsible for the protective effect. Taken together, these results suggest that recipient T lymphocytes play a significant role in suppressing antibody-mediated TRALI reactions. They identify a potentially new recipient mechanism that controls the severity of TRALI reactions.
  • Kapur, Rick, et al. (författare)
  • T regulatory cells and dendritic cells protect against transfusion-related acute lung injury via IL-10
  • 2017
  • Ingår i: Blood. - American Society of Hematology. - 1528-0020. ; 129:18, s. 2557-2569
  • Tidskriftsartikel (refereegranskat)abstract
    • Transfusion-related acute lung injury (TRALI) is the leading cause of transfusion-related fatalities and is characterized by acute respiratory distress following blood transfusion. Donor antibodies are frequently involved; however, the pathogenesis and protective mechanisms in the recipient are poorly understood, and specific therapies are lacking. Using newly developed murine TRALI models based on injection of anti-major histocompatibility complex class I antibodies, we found CD4+CD25+FoxP3+ T regulatory cells (Tregs) and CD11c+ dendritic cells (DCs) to be critical effectors that protect against TRALI. Treg or DC depletion in vivo resulted in aggravated antibody-mediated acute lung injury within 90 minutes with 60% mortality upon DC depletion. In addition, resistance to antibody-mediated TRALI was associated with increased interleukin-10 (IL-10) levels, and IL-10 levels were found to be decreased in mice suffering from TRALI. Importantly, IL-10 injection completely prevented and rescued the development of TRALI in mice and may prove to be a promising new therapeutic approach for alleviating lung injury in this serious complication of transfusion.
  • Semple, John W, et al. (författare)
  • Intravenous immunoglobulin prevents murine antibody-mediated acute lung injury at the level of neutrophil reactive oxygen species (ROS) production
  • 2012
  • Ingår i: PLoS ONE. - Public Library of Science. - 1932-6203. ; 7:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Transfusion-related acute lung injury (TRALI) is a leading cause of transfusion-associated mortality that can occur with any type of transfusion and is thought to be primarily due to donor antibodies activating pulmonary neutrophils in recipients. Recently, a large prospective case controlled clinical study of cardiac surgery patients demonstrated that despite implementation of male donors, a high incidence of TRALI still occurred and suggested a need for additional interventions in susceptible patient populations. To examine if intravenous immunoglobulin (IVIg) may be effective, a murine model of antibody-mediated acute lung injury that approximates human TRALI was examined. When BALB/c mice were injected with the anti-major histocompatibility complex class I antibody 34-1-2s, mild shock (reduced rectal temperature) and respiratory distress (dyspnea) were observed and pre-treatment of the mice with 2 g/kg IVIg completely prevented these symptoms. To determine IVIg's usefulness to affect severe lung damage, SCID mice, previously shown to be hypersensitive to 34-1-2s were used. SCID mice treated with 34-1-2s underwent severe shock, lung damage (increased wet/dry ratios) and 40% mortality within 2 hours. Treatment with 2 g/kg IVIg 18 hours before 34-1-2s administration completely protected the mice from all adverse events. Treatment with IVIg after symptoms began also reduced lung damage and mortality. While the prophylactic IVIg administration did not affect 34-1-2s-induced pulmonary neutrophil accumulation, bone marrow-derived neutrophils from the IVIg-treated mice displayed no spontaneous ROS production nor could they be stimulated in vitro with fMLP or 34-1-2s. These results suggest that IVIg prevents murine antibody-mediated acute lung injury at the level of neutrophil ROS production and thus, alleviating tissue damage.
  • Tabuchi, Arata, et al. (författare)
  • Acute Lung Injury Causes Asynchronous Alveolar Ventilation That Can Be Corrected by Individual Sighs
  • 2016
  • Ingår i: American Journal of Respiratory and Critical Care Medicine. - Am Thoracic Soc. - 1535-4970. ; 193:4, s. 396-406
  • Tidskriftsartikel (refereegranskat)abstract
    • RATIONALE: Improved ventilation strategies have been the mainstay for reducing mortality in acute respiratory distress syndrome. Their unique clinical effectiveness is, however, unmatched by our understanding of the underlying mechanobiology, and their impact on alveolar dynamics and gas exchange remains largely speculative.OBJECTIVES: To assess changes in alveolar dynamics and associated effects on local gas exchange in experimental models of acute lung injury (ALI) and their responsiveness to sighs.METHODS: Alveolar dynamics and local gas exchange were studied in vivo by darkfield microscopy and multispectral oximetry in experimental murine models of ALI induced by hydrochloric acid, Tween instillation, or in antibody-mediated transfusion-related ALI.MEASUREMENTS AND MAIN RESULTS: Independent of injury mode, ALI resulted in asynchronous alveolar ventilation characteristic of alveolar pendelluft, which either spontaneously resolved or progressed to a complete cessation or even inversion of alveolar ventilation. The functional relevance of the latter phenomena was evident as impaired blood oxygenation in juxtaposed lung capillaries. Individual sighs (2 × 10 s at inspiratory plateau pressure of 30 cm H2O) largely restored normal alveolar dynamics and gas exchange in acid-induced ALI, yet not in Tween-induced surfactant depletion.CONCLUSIONS: We describe for the first time in detail the different forms and temporal sequence of impaired alveolar dynamics in the acutely injured lung and report the first direct visualization of alveolar pendelluft. Moreover, we identify individual sighs as an effective strategy to restore intact alveolar ventilation by a mechanism independent of alveolar collapse and reopening.
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy