SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Talavera López Carlos) "

Search: WFRF:(Talavera López Carlos)

  • Result 1-6 of 6
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Phillips, Helen R. P., et al. (author)
  • Global distribution of earthworm diversity
  • 2019
  • In: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 366:6464, s. 480-
  • Journal article (peer-reviewed)abstract
    • Soil organisms, including earthworms, are a key component of terrestrial ecosystems. However, little is known about their diversity, their distribution, and the threats affecting them. We compiled a global dataset of sampled earthworm communities from 6928 sites in 57 countries as a basis for predicting patterns in earthworm diversity, abundance, and biomass. We found that local species richness and abundance typically peaked at higher latitudes, displaying patterns opposite to those observed in aboveground organisms. However, high species dissimilarity across tropical locations may cause diversity across the entirety of the tropics to be higher than elsewhere. Climate variables were found to be more important in shaping earthworm communities than soil properties or habitat cover. These findings suggest that climate change may have serious implications for earthworm communities and for the functions they provide.
  •  
2.
  • Mold, Jeff E., et al. (author)
  • Divergent clonal differentiation trajectories establish CD8(+) memory T cell heterogeneity during acute viral infections in humans
  • 2021
  • In: Cell Reports. - : Elsevier BV. - 2211-1247. ; 35:8
  • Journal article (peer-reviewed)abstract
    • The CD8(+) T cell response to an antigen is composed of many T cell clones with unique T cell receptors, together forming a heterogeneous repertoire of effector and memory cells. How individual T cell clones contribute to this heterogeneity throughout immune responses remains largely unknown. In this study, we longitudinally track human CD8(+) T cell clones expanding in response to yellow fever virus (YFV) vaccination at the single-cell level. We observed a drop in clonal diversity in blood from the acute to memory phase, suggesting that clonal selection shapes the circulating memory repertoire. Clones in the memory phase display biased differentiation trajectories along a gradient from stem cell to terminally differentiated effector memory fates. In secondary responses, YFV- and influenza-specific CD8(+) T cell clones are poised to recapitulate skewed differentiation trajectories. Collectively, we show that the sum of distinct clonal phenotypes results in the multifaceted human T cell response to acute viral infections.
  •  
3.
  • Muus, Christoph, et al. (author)
  • Single-cell meta-analysis of SARS-CoV-2 entry genes across tissues and demographics
  • 2021
  • In: Nature Medicine. - : Springer Science and Business Media LLC. - 1078-8956 .- 1546-170X. ; 27:3, s. 546-559
  • Journal article (peer-reviewed)abstract
    • Angiotensin-converting enzyme 2 (ACE2) and accessory proteases (TMPRSS2 and CTSL) are needed for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) cellular entry, and their expression may shed light on viral tropism and impact across the body. We assessed the cell-type-specific expression of ACE2, TMPRSS2 and CTSL across 107 single-cell RNA-sequencing studies from different tissues. ACE2, TMPRSS2 and CTSL are coexpressed in specific subsets of respiratory epithelial cells in the nasal passages, airways and alveoli, and in cells from other organs associated with coronavirus disease 2019 (COVID-19) transmission or pathology. We performed a meta-analysis of 31 lung single-cell RNA-sequencing studies with 1,320,896 cells from 377 nasal, airway and lung parenchyma samples from 228 individuals. This revealed cell-type-specific associations of age, sex and smoking with expression levels of ACE2, TMPRSS2 and CTSL. Expression of entry factors increased with age and in males, including in airway secretory cells and alveolar type 2 cells. Expression programs shared by ACE2(+)TMPRSS2(+) cells in nasal, lung and gut tissues included genes that may mediate viral entry, key immune functions and epithelial-macrophage cross-talk, such as genes involved in the interleukin-6, interleukin-1, tumor necrosis factor and complement pathways. Cell-type-specific expression patterns may contribute to the pathogenesis of COVID-19, and our work highlights putative molecular pathways for therapeutic intervention. An integrated analysis of over 100 single-cell and single-nucleus transcriptomics studies illustrates severe acute respiratory syndrome coronavirus 2 viral entry gene coexpression patterns across different human tissues, and shows association of age, smoking status and sex with viral entry gene expression in respiratory cell populations.
  •  
4.
  • Nystedt, Björn, et al. (author)
  • The Norway spruce genome sequence and conifer genome evolution
  • 2013
  • In: Nature. - : Nature Publishing Group. - 0028-0836 .- 1476-4687. ; 497:7451, s. 579-584
  • Journal article (peer-reviewed)abstract
    • Conifers have dominated forests for more than 200 million years and are of huge ecological and economic importance. Here we present the draft assembly of the 20-gigabase genome of Norway spruce (Picea abies), the first available for any gymnosperm. The number of well-supported genes (28,354) is similar to the >100 times smaller genome of Arabidopsis thaliana, and there is no evidence of a recent whole-genome duplication in the gymnosperm lineage. Instead, the large genome size seems to result from the slow and steady accumulation of a diverse set of long-terminal repeat transposable elements, possibly owing to the lack of an efficient elimination mechanism. Comparative sequencing of Pinus sylvestris, Abies sibirica, Juniperus communis, Taxus baccata and Gnetum gnemon reveals that the transposable element diversity is shared among extant conifers. Expression of 24-nucleotide small RNAs, previously implicated in transposable element silencing, is tissue-specific and much lower than in other plants. We further identify numerous long (>10,000 base pairs) introns, gene-like fragments, uncharacterized long non-coding RNAs and short RNAs. This opens up new genomic avenues for conifer forestry and breeding.
  •  
5.
  • Sikkema, Lisa, et al. (author)
  • An integrated cell atlas of the lung in health and disease
  • 2023
  • In: Nature Medicine. - : Springer Nature. - 1078-8956 .- 1546-170X. ; 29:6, s. 1563-1577
  • Journal article (peer-reviewed)abstract
    • Single-cell technologies have transformed our understanding of human tissues. Yet, studies typically capture only a limited number of donors and disagree on cell type definitions. Integrating many single-cell datasets can address these limitations of individual studies and capture the variability present in the population. Here we present the integrated Human Lung Cell Atlas (HLCA), combining 49 datasets of the human respiratory system into a single atlas spanning over 2.4 million cells from 486 individuals. The HLCA presents a consensus cell type re-annotation with matching marker genes, including annotations of rare and previously undescribed cell types. Leveraging the number and diversity of individuals in the HLCA, we identify gene modules that are associated with demographic covariates such as age, sex and body mass index, as well as gene modules changing expression along the proximal-to-distal axis of the bronchial tree. Mapping new data to the HLCA enables rapid data annotation and interpretation. Using the HLCA as a reference for the study of disease, we identify shared cell states across multiple lung diseases, including SPP1 + profibrotic monocyte-derived macrophages in COVID-19, pulmonary fibrosis and lung carcinoma. Overall, the HLCA serves as an example for the development and use of large-scale, cross-dataset organ atlases within the Human Cell Atlas.
  •  
6.
  • Talavera-López, Carlos (author)
  • Trypanosoma cruzi genome plasticity and evolution
  • 2016
  • Doctoral thesis (other academic/artistic)abstract
    • Trypanosoma cruzi, a protozoan from the Kinetoplastidae family, is the etiologic agent of Chagas disease, a major public health problem affecting mostly the poorest areas of Latin America. Due to the complex nature of the parasite’s genome it has been impossible to produce a complete reference genome sequence, thus hampering the implementation of post- genomic approaches to unveil the mechanisms of generation of antigenic variation and the identification of new drug targets. My doctoral studies have focused on the application of combined genome sequencing and computational methods to produce a complete reference T. cruzi genome sequence and perform comparative analyses to better understand the mechanisms that allow T. cruzi to evade the mammalian host immune system and to briskly adapt to novel environments. In paper I and II, different genome assembly strategies and second generation sequencing technologies were implemented to perform comparative analyses to identify elements of virulence between T. cruzi and two trypanosomatids that are non-pathogenic to humans: Trypanosoma cruzi marinkellei, a bat-restricted sub-species of the T. cruzi clade and the human avirulent species Trypanosoma rangeli. The studies reveal the expansion of T. cruzi- specific genomic traits specialised in the invasion of mammalian cells. In paper III, using third-generation, PacBio sequencing data it was possible to assemble the complete reference genome sequence of a Trypanosoma cruzi isolate from the DTU-I clade. This breakthrough allowed us - for the first time - to explore in detail the genome architecture of the subtelomeric areas where many parasite virulence factors are encoded. One of the most interesting discoveries was the overrepresentation of interspersed retrotransposons and microsatellites in tandem gene arrays coding for surface molecules, hinting at a retrotransposon-driven mechanism of recombination for generating new sequence variants. Whole genome sequencing of 35 T. cruzi DTU-I isolates, collected from different locations in the American continent, made possible to identify and characterise the mechanisms of adaptability employed by the parasite. Finally, paper IV analyses the mechanisms of genomic hybridisation in T. cruzi and the evolution over time of the hybrid offspring. The analysis revealed that during hybrid formation, the parasite integrates genetic material from each parental strains with the aid of retrotransposons and microsatellites, and the genome of these hybrid isolates moves quickly from a tetraploid to a diploid state. As a result, the hybrid strain has more genetic material, mostly in the subtelomeres, providing the parasite with a pool of new surface molecule genes with the potential to possibly increase its fitness in a new environment. In conclusion, the work presented here has advanced the understanding of parasite biology and provided a genomic resource to be exploited for the identification of drug targets and vaccine candidates.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-6 of 6
Type of publication
journal article (5)
doctoral thesis (1)
Type of content
peer-reviewed (5)
other academic/artistic (1)
Author/Editor
Lundeberg, Joakim (2)
Luecken, Malte D. (2)
Andersson, Björn (2)
Schmidt, Olaf (1)
Ingvarsson, Pär K (1)
Niittylä, Totte (1)
show more...
Garcia Gil, Rosario (1)
Sundberg, Björn (1)
Zhang, Bo (1)
Olson, Åke (1)
Jansson, Stefan (1)
Birkhofer, Klaus (1)
Keech, Olivier (1)
Tuominen, Hannele (1)
Svensson, Thomas (1)
Delhomme, Nicolas (1)
Nilsson, Ove (1)
Nuutinen, Visa (1)
Reinius, Björn (1)
Klaminder, Jonatan, ... (1)
Nystedt, Björn (1)
Vezzi, Francesco (1)
Sherwood, Ellen (1)
de Jong, Pieter (1)
Rashid, Muhammad Imt ... (1)
Arvestad, Lars (1)
Sandberg, Rickard (1)
Rillig, Matthias C. (1)
Wolters, Volkmar (1)
Koenig-Ries, Birgitt ... (1)
van den Berge, Maart ... (1)
Rojas, Mauricio (1)
Wetterbom, Anna (1)
Muys, Bart (1)
Holmberg, Kristina (1)
Larsson, Ludvig (1)
Frisen, Jonas (1)
Hvidsten, Torgeir R. (1)
Bhalerao, Rishikesh ... (1)
Bohlmann, Joerg (1)
Klasson, Lisa (1)
Andrusivova, Zaneta (1)
Wardle, David A. (1)
Chaffin, Mark (1)
Elfstrand, Malin (1)
Scofield, Douglas G. (1)
Giacomello, Stefania (1)
Borgström, Erik (1)
Käller, Max (1)
Ståhl, Patrik (1)
show less...
University
Royal Institute of Technology (4)
Karolinska Institutet (4)
Umeå University (2)
Stockholm University (2)
Swedish University of Agricultural Sciences (2)
Uppsala University (1)
Language
English (6)
Research subject (UKÄ/SCB)
Medical and Health Sciences (3)
Natural sciences (2)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view