SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Tang Wei) ;lar1:(kth)"

Sökning: WFRF:(Tang Wei) > Kungliga Tekniska Högskolan

  • Resultat 1-10 av 27
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Zhang, Wei-Wei, et al. (författare)
  • Thermodynamic Assessment of the Cu-B System Supported by Key Experiment and First-Principles Calculations
  • 2009
  • Ingår i: Journal of Phase Equilibria and Diffusion. - : Springer Science and Business Media LLC. - 1547-7037 .- 1863-7345. ; 30:5, s. 480-486
  • Tidskriftsartikel (refereegranskat)abstract
    • The Cu-B system was investigated via a hybrid approach of key experiment and thermodynamic modeling. Based on the critically assessed Cu-B phase diagram, seven crucial alloys were selected and prepared by arc melting the pure elements. An inductively coupled plasma-atomic emission spectrometric analysis was conducted to determine the compositions of the prepared alloys. The phase equilibria were determined by using x-ray diffraction, electron probe microanalysis, and differential thermal analysis. The temperature associated with the eutectic reaction, L double left right arrow (B) + (Cu); was measured to be 1028 +/- 2 degrees C. First-principles calculations indicate that the energy of inserting a B atom into the interstitial vacancy (Va) site of the lattice for Cu atoms is marginally lower than that of substituting for a Cu atom with a B atom. Consequently, the sublattice model (Cu)(B, Va) in which B atoms occupy the interstitial sites was employed for the fcc (Cu) phase rather than the model (Cu, B)(Va) in which B atoms substitute for Cu atoms. A thermodynamic modeling of the Cu-B system was then performed by considering the reliable literature data and the present experimental results. A good agreement between modeling and experiment was obtained.
  •  
2.
  • Chen, Wei, et al. (författare)
  • Colloidal PbS quantum dot stacking kinetics during deposition via printing
  • 2020
  • Ingår i: Nanoscale Horizons. - : Royal Society of Chemistry (RSC). - 2055-6764 .- 2055-6756. ; 5:5, s. 880-885
  • Tidskriftsartikel (refereegranskat)abstract
    • Colloidal PbS quantum dots (QDs) are attractive for solution-processed thin-film optoelectronic applications. In particular, directly achieving QD thin-films by printing is a very promising method for low-cost and large-scale fabrication. The kinetics of QD particles during the deposition process play an important role in the QD film quality and their respective optoelectronic performance. In this work, the particle self-organization behavior of small-sized QDs with an average diameter of 2.88 +/- 0.36 nm is investigated for the first time in situ during printing by grazing-incidence small-angle X-ray scattering (GISAXS). The time-dependent changes in peak intensities suggest that the structure formation and phase transition of QD films happen within 30 seconds. The stacking of QDs is initialized by a templating effect, and a face-centered cubic (FCC) film forms in which a superlattice distortion is also found. A body-centered cubic nested FCC stacking is the final QD assembly layout. The small size of the inorganic QDs and the ligand collapse during the solvent evaporation can well explain this stacking behavior. These results provide important fundamental understanding of structure formation of small-sized QD based films prepared via large-scale deposition with printing with a slot die coater.
  •  
3.
  • Chen, Wei, et al. (författare)
  • In situ Grazing-Incidence Small-Angle X-ray Scattering Observation of Gold Sputter Deposition on a PbS Quantum Dot Solid
  • 2020
  • Ingår i: ACS Applied Materials and Interfaces. - : NLM (Medline). - 1944-8244 .- 1944-8252. ; 12:41, s. 46942-46952
  • Tidskriftsartikel (refereegranskat)abstract
    • For PbS quantum dot (QD)-based optoelectronic devices, gold is the most frequently used electrode material. In most device architectures, gold is in direct contact with the QD solid. To better understand the formation of the interface between gold and a close-packed QD layer at an early stage, in situ grazing-incidence small-angle X-ray scattering is used to observe the gold sputter deposition on a 1,2-ethanedithiol (EDT)-treated PbS QD solid. In the kinetics of gold layer growth, the forming and merging of small gold clusters (radius less than 1.6 nm) are observed at the early stages. The thereby formed medium gold clusters (radius between 1.9-2.4 nm) are influenced by the QDs' templating effect. Furthermore, simulations suggest that the medium gold clusters grow preferably along the QDs' boundaries rather than as a top coating of the QDs. When the thickness of the sputtered gold layer reaches 6.25 nm, larger gold clusters with a radius of 5.3 nm form. Simultaneously, a percolation layer with a thickness of 2.5 nm is established underneath the gold clusters. This fundamental understanding of the QD-gold interface formation will help to control the implementation of sputtered gold electrodes on close-packed QD solids in device manufacturing processes.
  •  
4.
  • Fenstermacher, M.E., et al. (författare)
  • DIII-D research advancing the physics basis for optimizing the tokamak approach to fusion energy
  • 2022
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 62:4
  • Tidskriftsartikel (refereegranskat)abstract
    • DIII-D physics research addresses critical challenges for the operation of ITER and the next generation of fusion energy devices. This is done through a focus on innovations to provide solutions for high performance long pulse operation, coupled with fundamental plasma physics understanding and model validation, to drive scenario development by integrating high performance core and boundary plasmas. Substantial increases in off-axis current drive efficiency from an innovative top launch system for EC power, and in pressure broadening for Alfven eigenmode control from a co-/counter-I p steerable off-axis neutral beam, all improve the prospects for optimization of future long pulse/steady state high performance tokamak operation. Fundamental studies into the modes that drive the evolution of the pedestal pressure profile and electron vs ion heat flux validate predictive models of pedestal recovery after ELMs. Understanding the physics mechanisms of ELM control and density pumpout by 3D magnetic perturbation fields leads to confident predictions for ITER and future devices. Validated modeling of high-Z shattered pellet injection for disruption mitigation, runaway electron dissipation, and techniques for disruption prediction and avoidance including machine learning, give confidence in handling disruptivity for future devices. For the non-nuclear phase of ITER, two actuators are identified to lower the L-H threshold power in hydrogen plasmas. With this physics understanding and suite of capabilities, a high poloidal beta optimized-core scenario with an internal transport barrier that projects nearly to Q = 10 in ITER at ∼8 MA was coupled to a detached divertor, and a near super H-mode optimized-pedestal scenario with co-I p beam injection was coupled to a radiative divertor. The hybrid core scenario was achieved directly, without the need for anomalous current diffusion, using off-axis current drive actuators. Also, a controller to assess proximity to stability limits and regulate β N in the ITER baseline scenario, based on plasma response to probing 3D fields, was demonstrated. Finally, innovative tokamak operation using a negative triangularity shape showed many attractive features for future pilot plant operation.
  •  
5.
  • Jiang, Xinyu, et al. (författare)
  • Internal nanoscale architecture and charge carrier dynamics of wide bandgap non-fullerene bulk heterojunction active layers in organic solar cells
  • 2020
  • Ingår i: Journal of Materials Chemistry A. - : Royal Society of Chemistry (RSC). - 2050-7488 .- 2050-7496. ; 8:44, s. 23628-23636
  • Tidskriftsartikel (refereegranskat)abstract
    • Bulk heterojunction (BHJ) organic solar cells have gained increasing attention in the past few years. In this work, active layers of a wide-bandgap polymer donor with benzodithiophene units PBDB-T-2F and a non-fullerene small molecule acceptor IT-M are assembled into photovoltaic devices with different amounts of solvent additive 1,8-diiodooctane (DIO). The influence of DIO on the nanoscale film morphology and crystalline structure as well as the charge carrier dynamics of the active layers are investigated by combining grazing-incidence small-angle X-ray scattering (GISAXS), grazing-incidence wide-angle X-ray scattering (GIWAXS), X-ray reflectivity (XRR), UV-visible (UV-vis) absorption spectroscopy, X-ray photoelectron spectroscopy (XPS), time-resolved photoluminescence (TRPL) and space charge limited current measurements, which are correlated with the corresponding performance of the solar cells. At 0.5 vol% DIO addition, the wide-bandgap non-fullerene organic solar cells show the best performance due to high open-circuit voltage and short-circuit current resulting from an improved charge carrier management due to the optimal inner nanoscale morphology of the active layers in terms of surface enrichment, crystallinity and crystalline orientation.
  •  
6.
  • Li, Liang, et al. (författare)
  • A CORRELATED STUDY OF OPTICAL AND X-RAY AFTERGLOWS OF GRBs
  • 2015
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 805:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We study an extensive sample of 87 gamma-ray bursts (GRBs) for which there are well-sampled and simultaneous optical and X-ray light curves. We extract the cleanest possible signal of the afterglow component. and compare the temporal behaviors of the X-ray light. curve, observed by Swift XRT, and optical data, observed by UVOT and ground-based telescopes for each individual burst. Overall we find that 62% of the GRBs. are consistent with the standard afterglow model. When more advanced modeling is invoked, up to 91% of the bursts in our sample may be consistent with the external-shock model. A large fraction of these bursts are consistent with occurring in a constant interstellar density medium (61%) while only 39% of them occur in a wind-like medium. Only nine cases have afterglow light curves that exactly match the standard fireball model prediction, having a single power-law decay in both energy bands that are observed during their entire duration. In particular, for the bursts with chromatic behavior, additional model assumptions must be made over limited segments of the light curves in order for these bursts to fully agree with the external-shock model. Interestingly, for 54% of the X-ray and 40% of the optical band observations, the end of the shallow decay (t(similar to-0.5)) period coincides with the jet-break (t(similar to-p)) time, causing an abrupt change in decay slope. The fraction of the burst that is consistent with the external-shock model is independent of the observational epochs in the rest frame of GRBs. Moreover, no cases can be explained by the cooling frequency crossing the X-ray or optical band.
  •  
7.
  • Arsenlis, Athanasios, et al. (författare)
  • Enabling strain hardening simulations with dislocation dynamics
  • 2007
  • Ingår i: Modelling and Simulation in Materials Science and Engineering. - : IOP Publishing. - 0965-0393 .- 1361-651X. ; 15, s. 553-595
  • Tidskriftsartikel (refereegranskat)abstract
    • Numerical algorithms for discrete dislocation dynamics simulations areinvestigated for the purpose of enabling strain hardening simulations of singlecrystals on massively parallel computers. The algorithms investigated includethe O(N) calculation of forces, the equations of motion, time integration,adaptive mesh refinement, the treatment of dislocation core reactions and thedynamic distribution of data and work on parallel computers. A simulationintegrating all these algorithmic elements using the Parallel DislocationSimulator (ParaDiS) code is performed to understand their behaviour in concertand to evaluate the overall numerical performance of dislocation dynamicssimulations and their ability to accumulate percent of plastic strain.
  •  
8.
  • Cheng, Hao, et al. (författare)
  • Nanoparticles with aggregation-induced emission for monitoring long time cell membrane interactions
  • 2013
  • Ingår i: Progress In Electromagnetics Research. - 1070-4698 .- 1559-8985. ; 140, s. 313-325
  • Tidskriftsartikel (refereegranskat)abstract
    • We perform the long time monitoring of nanoparticle-cell membrane interaction with high spatial and temporal resolution. The 2, 3-bis(4-(pheny1(4-(1, 2, 2-triphenylvinyl) phenyl)amino)phenyl) fumaronitrile (TPE-TPA-FN) is doped in organically modified silica (ORMOSIL) to be a biocompatible nanoprobe, which displays an aggregation-induced emission (ATE) effect. Photobleaching resistance of this synthesized nanoparticle is tested and compared with its similar counterpart, which proves its superiority and capability of long term fluorescence emission. We utilize the objective-based total internal reflection microscopy combined with the living cell incubation platform to investigate the cell uptake process of this nanoparticle in real time.
  •  
9.
  • Du, Haifeng, et al. (författare)
  • Interaction of Individual Skyrmions in a Nanostructured Cubic Chiral Magnet
  • 2018
  • Ingår i: Physical Review Letters. - : American Physical Society. - 0031-9007 .- 1079-7114. ; 120:19
  • Tidskriftsartikel (refereegranskat)abstract
    • We report direct evidence of the field-dependent character of the interaction between individual magnetic skyrmions as well as between skyrmions and edges in B20-type FeGe nanostripes observed by means of high-resolution Lorentz transmission electron microscopy. It is shown that above certain critical values of an external magnetic field the character of such long-range skyrmion interactions changes from attraction to repulsion. Experimentally measured equilibrium inter-skyrmion and skyrmion-edge distances as a function of the applied magnetic field shows quantitative agreement with the results of micromagnetic simulations. The important role of demagnetizing fields and the internal symmetry of three-dimensional magnetic skyrmions are discussed in detail.
  •  
10.
  • Guan, Tianfu, et al. (författare)
  • Decoding the Self-Assembly Plasmonic Interface Structure in a PbS Colloidal Quantum Dot Solid for a Photodetector
  • 2023
  • Ingår i: ACS Nano. - : American Chemical Society (ACS). - 1936-0851 .- 1936-086X. ; 17:22, s. 23010-23019
  • Tidskriftsartikel (refereegranskat)abstract
    • Hybrid plasmonic nanostructures have gained enormous attention in a variety of optoelectronic devices due to their surface plasmon resonance properties. Self-assembled hybrid metal/quantum dot (QD) architectures offer a means of coupling the properties of plasmonics and QDs to photodetectors, thereby modifying their functionality. The arrangement and localization of hybrid nanostructures have an impact on exciton trapping and light harvesting. Here, we present a hybrid structure consisting of self-assembled gold nanospheres (Au NSs) embedded in a solid matrix of PbS QDs for mapping the interface structures and the motion of charge carriers. Grazing-incidence small-angle X-ray scattering is utilized to analyze the localization and spacing of the Au NSs within the hybrid structure. Furthermore, by correlating the morphology of the Au NSs in the hybrid structure with the corresponding differences observed in the performance of photodetectors, we are able to determine the impact of interface charge carrier dynamics in the coupling structure. From the perspective of architecture, our study provides insights into the performance improvement of optoelectronic devices.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 27

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy