SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Taquet V) ;pers:(Drozdovskaya M. N.)"

Sökning: WFRF:(Taquet V) > Drozdovskaya M. N.

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Jorgensen, J. K., et al. (författare)
  • The ALMA-PILS survey: isotopic composition of oxygen-containing complex organic molecules toward IRAS 16293-2422B
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 620
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. One of the important questions of astrochemistry is how complex organic molecules, including potential prebiotic species, are formed in the envelopes around embedded protostars. The abundances of minor isotopologues of a molecule, in particular the D- and C-13-bearing variants, are sensitive to the densities, temperatures and timescales characteristic of the environment in which they form, and can therefore provide important constraints on the formation routes and conditions of individual species. Aims. The aim of this paper is to systematically survey the deuteration and the C-13 content of a variety of oxygen-bearing complex organic molecules on solar system scales toward the "B component" of the protostellar binary IRAS16293-2422. Methods. We have used the data from an unbiased molecular line survey of the protostellar binary IRAS16293-2422 between 329 and 363 GHz from the Atacama Large Millimeter/submillimeter Array (ALMA). The data probe scales of 60 AU (diameter) where most of the organic molecules are expected to have sublimated off dust grains and be present in the gas phase. The deuterated and C-13 isotopic species of ketene, acetaldehyde and formic acid, as well as deuterated ethanol, are detected unambiguously for the first time in the interstellar medium. These species are analysed together with the C-13 isotopic species of ethanol, dimethyl ether and methyl formate along with mono-deuterated methanol, dimethyl ether and methyl formate. Results. The complex organic molecules can be divided into two groups with one group, the simpler species, showing a D/H ratio of approximate to 2% and the other, the more complex species, D/H ratios of 4-8%. This division may reflect the formation time of each species in the ices before or during warm-up/infall of material through the protostellar envelope. No significant differences are seen in the deuteration of different functional groups for individual species, possibly a result of the short timescale for infall through the innermost warm regions where exchange reactions between different species may be taking place. The species show differences in excitation temperatures between 125 and 300 K. This likely reflects the binding energies of the individual species, in good agreement with what has previously been found for high-mass sources. For dimethyl ether, the C-12/C-13 ratio is found to be lower by up to a factor of 2 compared to typical ISM values similar to what has previously been inferred for glycolaldehyde. Tentative identifications suggest that the same may apply for C-13 isotopologues of methyl formate and ethanol. If confirmed, this may be a clue to their formation at the late prestellar or early protostellar phases with an enhancement of the available C-13 relative to C-12 related to small differences in binding energies for CO isotopologues or the impact of FUV irradiation by the central protostar. Conclusions. The results point to the importance of ice surface chemistry for the formation of these complex organic molecules at different stages in the evolution of embedded protostars and demonstrate the use of accurate isotope measurements for understanding the history of individual species.
  •  
2.
  • Manigand, S., et al. (författare)
  • The ALMA-PILS survey: First detection of the unsaturated 3-carbon molecules Propenal (C2H3CHO) and Propylene (C3H6) towards IRAS 16293-2422 B
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 645
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Complex organic molecules with three carbon atoms are found in the earliest stages of star formation. In particular, propenal (C2H3CHO) is a species of interest due to its implication in the formation of more complex species and even biotic molecules. Aims. This study aims to search for the presence of C2H3CHO and other three-carbon species such as propylene (C3H6) in the hot corino region of the low-mass protostellar binary IRAS 16293-2422 to understand their formation pathways. Methods. We use ALMA observations in Band 6 and 7 from various surveys to search for the presence of C3H6 and C2H3CHO towards the protostar IRAS 16293-2422 B (IRAS 16293B). The identification of the species and the estimates of the column densities and excitation temperatures are carried out by modeling the observed spectrum under the assumption of local thermodynamical equilibrium. Results. We report the detection of both C3H6 and C2H3CHO towards IRAS 16293B, however, no unblended lines were found towards the other component of the binary system, IRAS 16293A. We derive column density upper limits for C3H8, HCCCHO, n-C3H7OH, i-C3H7OH, C3O, and cis-HC(O)CHO towards IRAS 16293B. We then use a three-phase chemical model to simulate the formation of these species in a typical prestellar environment followed by its hydrodynamical collapse until the birth of the central protostar. Different formation paths, such as successive hydrogenation and radical-radical additions on grain surfaces, are tested and compared to the observational results in a number of different simulations, to assess which are the dominant formation mechanisms in the most embedded region of the protostar. Conclusions. The simulations reproduce the abundances within one order of magnitude from those observed towards IRAS 16293B, with the best agreement found for a rate of 10-12 cm3 s-1 for the gas-phase reaction C3 + O → C2 + CO. Successive hydrogenations of C3, HC(O)CHO, and CH3OCHO on grain surfaces are a major and crucial formation route of complex organics molecules, whereas both successive hydrogenation pathways and radical-radical addition reactions contribute to the formation of C2H5CHO.
  •  
3.
  • Taquet, V., et al. (författare)
  • Linking interstellar and cometary O2: A deep search for 16O18O in the solar-Type protostar IRAS 16293b-2422
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 618
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent measurements carried out at comet 67P/Churyumov-Gerasimenko (67P) with the Rosetta probe revealed that molecular oxygen, O2, is the fourth most abundant molecule in comets. Models show that O2 is likely of primordial nature, coming from the interstellar cloud from which our solar system was formed. However, gaseous O2 is an elusive molecule in the interstellar medium with only one detection towards quiescent molecular clouds, in the ρ Oph A core. We perform a deep search for molecular oxygen, through the 21-01 rotational transition at 234 GHz of its 16O18O isotopologue, towards the warm compact gas surrounding the nearby Class 0 protostar IRAS 16293-2422 B with the ALMA interferometer. We also look for the chemical daughters of O2, HO2, and H2O2. Unfortunately, the H2O2 rotational transition is dominated by ethylene oxide c-C2H4O while HO2 is not detected. The targeted 16O18O transition is surrounded by two brighter transitions at ± 1 km s-1 relative to the expected 16O18O transition frequency. After subtraction of these two transitions, residual emission at a 3σ level remains, but with a velocity offset of 0.3-0.5 km s-1 relative to the source velocity, rendering the detection "tentative". We derive the O2 column density for two excitation temperatures Tex of 125 and 300 K, as indicated by other molecules, in order to compare the O2 abundance between IRAS 16293 and comet 67P. Assuming that 16O18O is not detected and using methanol CH3OH as a reference species, we obtain a [O2]/[CH3OH] abundance ratio lower than 2-5, depending on the assumed Tex, a three to four times lower abundance than the [O2]/[CH3OH] ratio of 5-15 found in comet 67P. Such a low O2 abundance could be explained by the lower temperature of the dense cloud precursor of IRAS 16293 with respect to the one at the origin of our solar system that prevented efficient formation of O2 in interstellar ices.
  •  
4.
  • Manigand, S., et al. (författare)
  • The ALMA-PILS survey: The first detection of doubly-deuterated methyl formate (CHD2OCHO) in the ISM
  • 2019
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746.
  • Tidskriftsartikel (refereegranskat)abstract
    • Studies of deuterated isotopologues of complex organic molecules can provide important constraints on their origin in regions of star formation. In particular, the abundances of deuterated species are very sensitive to the physical conditions in the environment where they form. Due to the low temperatures in regions of star formation, these isotopologues are enhanced to significant levels, making detections of multiply-deuterated species possible. However, for complex organic species, only the multiply-deuterated variants of methanol and methyl cyanide have been reported so far. The aim of this paper is to initiate the characterisation of multiply-deuterated variants of complex organic species with the first detection of doubly-deuterated methyl formate, CHD2OCHO. We use ALMA observations from the Protostellar Interferometric Line Survey (PILS) of the protostellar binary IRAS 16293-2422, in the spectral range of 329.1 GHz to 362.9 GHz. We report the first detection of doubly-deuterated methyl formate CHD2OCHO in the ISM. The D/H ratio of CHD2OCHO is found to be 2-3 times higher than the D/H ratio of CH2DOCHO for both sources, similar to the results for formaldehyde from the same dataset. The observations are compared to a gas-grain chemical network coupled to a dynamical physical model, tracing the evolution of a molecular cloud until the end of the Class 0 protostellar stage. The overall D/H ratio enhancements found in the observations are of the same order of magnitude as the predictions from the model for the early stages of Class 0 protostars. However, the higher D/H ratio of CHD2OCHO compared to the D/H ratio of CH2DOCHO is still not predicted by the model. This suggests that a mechanism is enhancing the D/H ratio of singly- and doubly-deuterated methyl formate that is not in the model, e.g. mechanisms for H-D substitutions.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy