SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Tautvaisiene G.) ;pers:(Flaccomio E.)"

Sökning: WFRF:(Tautvaisiene G.) > Flaccomio E.

  • Resultat 1-10 av 22
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Gilmore, G., et al. (författare)
  • The Gaia-ESO Public Spectroscopic Survey : Motivation, implementation, GIRAFFE data processing, analysis, and final data products star
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 666
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The Gaia-ESO Public Spectroscopic Survey is an ambitious project designed to obtain astrophysical parameters and elemental abundances for 100 000 stars, including large representative samples of the stellar populations in the Galaxy, and a well-defined sample of 60 (plus 20 archive) open clusters. We provide internally consistent results calibrated on benchmark stars and star clusters, extending across a very wide range of abundances and ages. This provides a legacy data set of intrinsic value, and equally a large wide-ranging dataset that is of value for the homogenisation of other and future stellar surveys and Gaia's astrophysical parameters. Aims. This article provides an overview of the survey methodology, the scientific aims, and the implementation, including a description of the data processing for the GIRAFFE spectra. A companion paper introduces the survey results. Methods. Gaia-ESO aspires to quantify both random and systematic contributions to measurement uncertainties. Thus, all available spectroscopic analysis techniques are utilised, each spectrum being analysed by up to several different analysis pipelines, with considerable effort being made to homogenise and calibrate the resulting parameters. We describe here the sequence of activities up to delivery of processed data products to the ESO Science Archive Facility for open use. Results. The Gaia-ESO Survey obtained 202 000 spectra of 115 000 stars using 340 allocated VLT nights between December 2011 and January 2018 from GIRAFFE and UVES. Conclusions. The full consistently reduced final data set of spectra was released through the ESO Science Archive Facility in late 2020, with the full astrophysical parameters sets following in 2022. A companion article reviews the survey implementation, scientific highlights, the open cluster survey, and data products.
  •  
2.
  • Smiljanic, R., et al. (författare)
  • The Gaia-ESO Survey: The analysis of high-resolution UVES spectra of FGK-type stars
  • 2014
  • Ingår i: Astronomy & Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 570
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The ongoing Gaia-ESO Public Spectroscopic Survey is using FLAMES at the VLT to obtain high-quality medium-resolution Giraffe spectra for about 10(5) stars and high-resolution UVES spectra for about 5000 stars. With UVES, the Survey has already observed 1447 FGK-type stars. Aims. These UVES spectra are analyzed in parallel by several state-of-the-art methodologies. Our aim is to present how these analyses were implemented, to discuss their results, and to describe how a final recommended parameter scale is defined. We also discuss the precision (method-to-method dispersion) and accuracy (biases with respect to the reference values) of the final parameters. These results are part of the Gaia-ESO second internal release and will be part of its first public release of advanced data products. Methods. The final parameter scale is tied to the scale defined by the Gaia benchmark stars, a set of stars with fundamental atmospheric parameters. In addition, a set of open and globular clusters is used to evaluate the physical soundness of the results. Each of the implemented methodologies is judged against the benchmark stars to define weights in three different regions of the parameter space. The final recommended results are the weighted medians of those from the individual methods. Results. The recommended results successfully reproduce the atmospheric parameters of the benchmark stars and the expected T-eff-log g relation of the calibrating clusters. Atmospheric parameters and abundances have been determined for 1301 FGK-type stars observed with UVES. The median of the method-to-method dispersion of the atmospheric parameters is 55K for T-eff, 0.13dex for log g and 0.07 dex for [Fe/H]. Systematic biases are estimated to be between 50-100 K for T-eff, 0.10-0.25 dex for log g and 0.05-0.10 dex for [Fe/H]. Abundances for 24 elements were derived: C, N, O, Na, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Mo, Ba, Nd, and Eu. The typical method-to-method dispersion of the abundances varies between 0.10 and 0.20 dex. Conclusions. The Gaia-ESO sample of high-resolution spectra of FGK-type stars will be among the largest of its kind analyzed in a homogeneous way. The extensive list of elemental abundances derived in these stars will enable significant advances in the areas of stellar evolution and Milky Way formation and evolution.
  •  
3.
  • Casey, A. R., et al. (författare)
  • The Gaia-ESO Survey : Revisiting the Li-rich giant problem
  • 2016
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 461:3, s. 3336-3352
  • Tidskriftsartikel (refereegranskat)abstract
    • The discovery of lithium-rich giants contradicts expectations from canonical stellar evolution. Here we report on the serendipitous discovery of 20 Li-rich giants observed during the Gaia-ESO Survey, which includes the first nine Li-rich giant stars known towards the CoRoT fields. Most of our Li-rich giants have near-solar metallicities and stellar parameters consistent with being before the luminosity bump. This is difficult to reconcile with deep mixing models proposed to explain lithium enrichment, because these models can only operate at later evolutionary stages: at or past the luminosity bump. In an effort to shed light on the Li-rich phenomenon, we highlight recent evidence of the tidal destruction of close-in hot Jupiters at the sub-giant phase.We note that when coupled with models of planet accretion, the observed destruction of hot Jupiters actually predicts the existence of Li-rich giant stars, and suggests that Li-rich stars should be found early on the giant branch and occur more frequently with increasing metallicity. A comprehensive review of all known Li-rich giant stars reveals that this scenario is consistent with the data. However, more evolved or metal-poor stars are less likely to host close-in giant planets, implying that their Li-rich origin requires an alternative explanation, likely related to mixing scenarios rather than external phenomena.
  •  
4.
  • Bertelli Motta, C., et al. (författare)
  • The Gaia-ESO Survey : evidence of atomic diffusion in M67?
  • 2018
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press. - 0035-8711 .- 1365-2966. ; 478:1, s. 425-438
  • Tidskriftsartikel (refereegranskat)abstract
    • Investigating the chemical homogeneity of stars born from the same molecular cloud at virtually the same time is very important for our understanding of the chemical enrichment of the interstellar medium and with it the chemical evolution of the Galaxy. One major cause of inhomogeneities in the abundances of open clusters is stellar evolution of the cluster members. In this work, we investigate variations in the surface chemical composition of member stars of the old open cluster M67 as a possible consequence of atomic diffusion effects taking place during the main-sequence phase. The abundances used are obtained from high-resolution UVES/FLAMES spectra within the framework of the Gaia-ESO Survey. We find that the surface abundances of stars on the main sequence decrease with increasing mass reaching a minimum at the turn-off. After deepening of the convective envelope in subgiant branch stars, the initial surface abundances are restored. We found the measured abundances to be consistent with the predictions of stellar evolutionary models for a cluster with the age and metallicity of M67. Our findings indicate that atomic diffusion poses a non-negligible constraint on the achievable precision of chemical tagging methods.
  •  
5.
  • Magrini, L., et al. (författare)
  • The Gaia -ESO Survey : radial distribution of abundances in the Galactic disc from open clusters and young-field stars
  • 2017
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 603
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The spatial distribution of elemental abundances in the disc of our Galaxy gives insights both on its assembly process and subsequent evolution, and on the stellar nucleogenesis of the different elements. Gradients can be traced using several types of objects as, for instance, (young and old) stars, open clusters, HII regions, planetary nebulae. Aims. We aim to trace the radial distributions of abundances of elements produced through different nucleosynthetic channels - the α-elements O, Mg, Si, Ca and Ti, and the iron-peak elements Fe, Cr, Ni and Sc - by use of the Gaia-ESO IDR4 results for open clusters and young-field stars. Methods. From the UVES spectra of member stars, we have determined the average composition of clusters with ages > 0.1 Gyr. We derived statistical ages and distances of field stars. We traced the abundance gradients using the cluster and field populations and compared them with a chemo-dynamical Galactic evolutionary model. Results. The adopted chemo-dynamical model, with the new generation of metallicity-dependent stellar yields for massive stars, is able to reproduce the observed spatial distributions of abundance ratios, in particular the abundance ratios of [O/Fe] and [Mg/Fe] in the inner disc (5 kpc
  •  
6.
  • Jacobson, H. R., et al. (författare)
  • The Gaia-ESO Survey : Probes of the inner disk abundance gradient
  • 2016
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 591
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The nature of the metallicity gradient inside the solar circle (R-GC < 8 kpc) is poorly understood, but studies of Cepheids and a small sample of open clusters suggest that it steepens in the inner disk. Aims. We investigate the metallicity gradient of the inner disk using a sample of inner disk open clusters that is three times larger than has previously been studied in the literature to better characterize the gradient in this part of the disk. Methods. We used the Gaia-ESO Survey (GES) [Fe/H] values and stellar parameters for stars in 12 open clusters in the inner disk from GES-UVES data. Cluster mean [Fe/H] values were determined based on a membership analysis for each cluster. Where necessary, distances and ages to clusters were determined via comparison to theoretical isochrones. Results. The GES open clusters exhibit a radial metallicity gradient of -0.10 +/- 0.02 dex kpc(-1), consistent with the gradient measured by other literature studies of field red giant stars and open clusters in the range R-GC similar to 6-12 kpc. We also measure a trend of increasing [Fe/H] with increasing cluster age, as has also been found in the literature. Conclusions. We find no evidence for a steepening of the inner disk metallicity gradient inside the solar circle as earlier studies indicated. The age-metallicity relation shown by the clusters is consistent with that predicted by chemical evolution models that include the effects of radial migration, but a more detailed comparison between cluster observations and models would be premature.
  •  
7.
  • Mikolaitis, S., et al. (författare)
  • The Gaia-ESO Survey: the chemical structure of the Galactic discs from the first internal data release
  • 2014
  • Ingår i: Astronomy & Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 572
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. Until recently, most high-resolution spectroscopic studies of the Galactic thin and thick discs were mostly confined to objects in the solar vicinity. Here we aim at enlarging the volume in which individual chemical abundances are used to characterise the thin and thick discs, using the first internal data release of the Gaia-ESO survey (GES iDR1). Methods. We used the spectra of around 2000 FGK dwarfs and giants from the GES iDR1, obtained at resolutions of up to R similar to 20 000 with the FLAMES/GIRAFFE spectrograph. We derive and discuss the abundances of eight elements (Mg, Al, Si, Ca, Ti, Fe, Cr, Ni, and Y). Results. We show that the trends of these elemental abundances with iron are very similar to those in the solar neighbourhood. We find a natural division between alpha-rich and alpha-poor stars, best seen in the bimodality of the [Mg/M] distributions in bins of metallicity, which we attribute to thick-and thin-disc sequences, respectively. This separation is visible for most alpha-elements and for aluminium. With the possible exception of Al, the observed dispersion around the trends is well described by the expected errors, leaving little room for astrophysical dispersion. Using previously derived distances from the first paper from this series for our sample, we further find that the thick-disc is more extended vertically and is more centrally concentrated towards the inner Galaxy than the thin-disc, which indicates a shorter scale-length. We derive the radial (4 to 12 kpc) and vertical (0 to 3.5 kpc) gradients in metallicity, iron, four alpha-element abundances, and aluminium for the two populations, taking into account the identified correlation between R-GC and vertical bar Z vertical bar. Similarly to other works, a radial metallicity gradient is found in the thin disc. The positive radial individual [alpha/M] gradients found are at variance from the gradients observed in the RAVE survey. The thin disc also hosts a negative vertical metallicity gradient in the solar cylinder, accompanied by positive individual [alpha/M] and [Al/M] gradients. The thick-disc, on the other hand, presents no radial metallicity gradient, a shallower vertical metallicity gradient than the thin-disc, an alpha-elements-to-iron radial gradient in the opposite sense than that of the thin disc, and positive vertical individual [alpha/M] and [Al/M] gradients. We examine several thick-disc formation scenarii in the light of these radial and vertical trends.
  •  
8.
  • Duffau, S., et al. (författare)
  • The Gaia-ESO Survey : Galactic evolution of sulphur and zinc
  • 2017
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 604
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Due to their volatile nature, when sulphur and zinc are observed in external galaxies, their determined abundances represent the gas-phase abundances in the interstellar medium. This implies that they can be used as tracers of the chemical enrichment of matter in the Universe at high redshift. Comparable observations in stars are more difficult and, until recently, plagued by small number statistics. Aims. We wish to exploit the Gaia-ESO Survey (GES) data to study the behaviour of sulphur and zinc abundances of a large number of Galactic stars, in a homogeneous way. Methods. By using the UVES spectra of the GES sample, we are able to assemble a sample of 1301 Galactic stars, including stars in open and globular clusters in which both sulphur and zinc were measured. Results. We confirm the results from the literature that sulphur behaves as an α-element. We find a large scatter in [Zn/Fe] ratios among giant stars around solar metallicity. The lower ratios are observed in giant stars at Galactocentric distances less than 7.5 kpc. No such effect is observed among dwarf stars, since they do not extend to that radius. Conclusions. Given the sample selection, giants and dwarfs are observed at different Galactic locations, and it is plausible, and compatible with simple calculations, that Zn-poor giants trace a younger population more polluted by SN Ia yields. It is necessary to extend observations in order to observe both giants and dwarfs at the same Galactic location. Further theoretical work on the evolution of zinc is also necessary.
  •  
9.
  • Lagarde, N., et al. (författare)
  • The Gaia-ESO Survey : impact of extra mixing on C and N abundances of giant stars
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP SCIENCES S A. - 0004-6361 .- 1432-0746. ; 621
  • Tidskriftsartikel (refereegranskat)abstract
    • Context: The Gaia-ESO Public Spectroscopic Survey using FLAMES at the VLT has obtained high-resolution UVES spectra for a large number of giant stars, allowing a determination of the abundances of the key chemical elements carbon and nitrogen at their surface. The surface abundances of these chemical species are known to change in stars during their evolution on the red giant branch (RGB) after the first dredge-up episode, as a result of the extra mixing phenomena.Aims: We investigate the effects of thermohaline mixing on C and N abundances using the first comparison between the Gaia-ESO survey [C/N] determinations with simulations of the observed fields using a model of stellar population synthesis.Methods: We explore the effects of thermohaline mixing on the chemical properties of giants through stellar evolutionary models computed with the stellar evolution code STAREVOL. We include these stellar evolution models in the Besancon Galaxy model to simulate the [C/N] distributions determined from the UVES spectra of the Gaia-ESO survey and to compare them with the observations.Results: Theoretical predictions including the effect of thermohaline mixing are in good agreement with the observations. However, the field stars in the Gaia-ESO survey with C and N abundance measurements have a metallicity close to solar, where the efficiency of thermohaline mixing is not very large. The C and N abundances derived by the Gaia-ESO survey in open and globular clusters clearly show the impact of thermohaline mixing at low metallicity, which explains the [C/N] value observed in lower mass and older giant stars. Using independent observations of carbon isotopic ratio in clump field stars and open clusters, we also confirm that thermohaline mixing should be taken into account to explain the behaviour of C-12/C-13 as a function of stellar age.Conclusions: Overall, the current model including thermohaline mixing is able to reproduce very well the C and N abundances over the whole metallicity range investigated by the Gaia-ESO survey data.
  •  
10.
  • Magrini, L., et al. (författare)
  • The Gaia-ESO Survey: Insights into the inner-disc evolution from open clusters
  • 2015
  • Ingår i: Astronomy & Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 580
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The inner disc, which links the thin disc with the bulge, has been somewhat neglected in the past because of the intrinsic difficulties in its study, among which crowding and high extinction. Open clusters located in the inner disc are among the best tracers of its chemistry at different ages and distances. Aims. We analyse the chemical patterns of four open clusters located within 7 kpc of the Galactic centre and of field stars to infer the properties of the inner disc with the Gaia-ESO survey idr2/3 data release. Methods. We derive the parameters of the newly observed cluster, Berkeley 81, finding an age of about 1 Gyr and a Galactocentric distance of similar to 5.4 kpc. We construct the chemical patterns of clusters and we compare them with those of field stars in the solar neighbourhood and in the inner-disc samples. Results. Comparing the three populations we observe that inner-disc clusters and field stars are both, on average, enhanced in [O/Fe], [Mg/Fe], and [Si/Fe]. Using the idr2/3 results of M67, we estimate the non-local thermodynamic equilibrium (NLTE) effect on the abundances of Mg and Si in giant stars. After empirically correcting for NLTE effects, we note that NGC 6705 and Be 81 still have a high [alpha/Fe]. Conclusions. The location of the four open clusters and of the field population reveals that the evolution of the metallicity [Fe/H] and of [alpha/Fe] can be explained within the framework of a simple chemical evolution model: both [Fe/H] and [alpha/Fe] of Trumpler 20 and of NGC 4815 are in agreement with expectations from a simple chemical evolution model. On the other hand, NGC 6705, and to a lesser degree Berkeley 81, have higher [alpha/Fe] than expected for their ages, location in the disc, and metallicity. These differences might originate from local enrichment processes as explained in the inhomogeneous evolution framework.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 22

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy