SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Tavtigian S) "

Sökning: WFRF:(Tavtigian S)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Thompson, B.A., et al. (författare)
  • Application of a 5-tiered scheme for standardized classification of 2,360 unique mismatch repair gene variants in the InSiGHT locus-specific database
  • 2014
  • Ingår i: Nature Genetics. - : Nature Publishing Group. - 1061-4036 .- 1546-1718. ; 46:2, s. 107-115
  • Tidskriftsartikel (refereegranskat)abstract
    • The clinical classification of hereditary sequence variants identified in disease-related genes directly affects clinical management of patients and their relatives. The International Society for Gastrointestinal Hereditary Tumours (InSiGHT) undertook a collaborative effort to develop, test and apply a standardized classification scheme to constitutional variants in the Lynch syndrome-associated genes MLH1, MSH2, MSH6 and PMS2. Unpublished data submission was encouraged to assist in variant classification and was recognized through microattribution. The scheme was refined by multidisciplinary expert committee review of the clinical and functional data available for variants, applied to 2,360 sequence alterations, and disseminated online. Assessment using validated criteria altered classifications for 66% of 12,006 database entries. Clinical recommendations based on transparent evaluation are now possible for 1,370 variants that were not obviously protein truncating from nomenclature. This large-scale endeavor will facilitate the consistent management of families suspected to have Lynch syndrome and demonstrates the value of multidisciplinary collaboration in the curation and classification of variants in public locus-specific databases. © 2014 Nature America, Inc.
  •  
2.
  •  
3.
  •  
4.
  • Kohonen-Corish, Maija R J, et al. (författare)
  • How to catch all those mutations--the report of the third Human Variome Project Meeting, UNESCO Paris, May 2010.
  • 2010
  • Ingår i: Human Mutation. - : John Wiley and Sons Inc.. - 1059-7794 .- 1098-1004. ; 31:12, s. 1374-1381
  • Tidskriftsartikel (refereegranskat)abstract
    • The third Human Variome Project (HVP) Meeting "Integration and Implementation" was held under UNESCO Patronage in Paris, France, at the UNESCO Headquarters May 10-14, 2010. The major aims of the HVP are the collection, curation, and distribution of all human genetic variation affecting health. The HVP has drawn together disparate groups, by country, gene of interest, and expertise, who are working for the common good with the shared goal of pushing the boundaries of the human variome and collaborating to avoid unnecessary duplication. The meeting addressed the 12 key areas that form the current framework of HVP activities: Ethics; Nomenclature and Standards; Publication, Credit and Incentives; Data Collection from Clinics; Overall Data Integration and Access-Peripheral Systems/Software; Data Collection from Laboratories; Assessment of Pathogenicity; Country Specific Collection; Translation to Healthcare and Personalized Medicine; Data Transfer, Databasing, and Curation; Overall Data Integration and Access-Central Systems; and Funding Mechanisms and Sustainability. In addition, three societies that support the goals and the mission of HVP also held their own Workshops with the view to advance disease-specific variation data collection and utilization: the International Society for Gastrointestinal Hereditary Tumours, the Micronutrient Genomics Project, and the Neurogenetics Consortium.
  •  
5.
  • Phelan, C M, et al. (författare)
  • Classification of BRCA1 missense variants of unknown clinical significance
  • 2005
  • Ingår i: Journal of Medical Genetics. - : BMJ Publishing Group. - 0022-2593. ; 42:2, s. 138-146
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: BRCA1 is a tumour suppressor with pleiotropic actions. Germline mutations in BRCA1 are responsible for a large proportion of breast - ovarian cancer families. Several missense variants have been identified throughout the gene but because of lack of information about their impact on the function of BRCA1, predictive testing is not always informative. Classification of missense variants into deleterious/ high risk or neutral/low clinical significance is essential to identify individuals at risk. Objective: To investigate a panel of missense variants. Methods and results: The panel was investigated in a comprehensive framework that included ( 1) a functional assay based on transcription activation; ( 2) segregation analysis and a method of using incomplete pedigree data to calculate the odds of causality; ( 3) a method based on interspecific sequence variation. It was shown that the transcriptional activation assay could be used as a test to characterise mutations in the carboxy-terminus region of BRCA1 encompassing residues 1396 - 1863. Thirteen missense variants (H1402Y, L1407P, H1421Y, S1512I, M1628T, M1628V, T1685I, G1706A, T1720A, A1752P, G1788V, V1809F, and W1837R) were specifically investigated. Conclusions: While individual classification schemes for BRCA1 alleles still present limitations, a combination of several methods provides a more powerful way of identifying variants that are causally linked to a high risk of breast and ovarian cancer. The framework presented here brings these variants nearer to clinical applicability.
  •  
6.
  • Kaput, Jim, et al. (författare)
  • Planning the human variome project: the Spain report.
  • 2009
  • Ingår i: Human Mutation. - : John Wiley and Sons Inc.. - 1059-7794. ; 30:4, s. 496-510
  • Tidskriftsartikel (refereegranskat)abstract
    • The remarkable progress in characterizing the human genome sequence, exemplified by the Human Genome Project and the HapMap Consortium, has led to the perception that knowledge and the tools (e.g., microarrays) are sufficient for many if not most biomedical research efforts. A large amount of data from diverse studies proves this perception inaccurate at best, and at worst, an impediment for further efforts to characterize the variation in the human genome. Because variation in genotype and environment are the fundamental basis to understand phenotypic variability and heritability at the population level, identifying the range of human genetic variation is crucial to the development of personalized nutrition and medicine. The Human Variome Project (HVP; http://www.humanvariomeproject.org/) was proposed initially to systematically collect mutations that cause human disease and create a cyber infrastructure to link locus specific databases (LSDB). We report here the discussions and recommendations from the 2008 HVP planning meeting held in San Feliu de Guixols, Spain, in May 2008.
  •  
7.
  •  
8.
  •  
9.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9
 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy