SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Tay N) ;lar1:(gu)"

Sökning: WFRF:(Tay N) > Göteborgs universitet

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Munk, P., et al. (författare)
  • Genomic analysis of sewage from 101 countries reveals global landscape of antimicrobial resistance
  • 2022
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Antimicrobial resistance (AMR) is a major threat to global health. Understanding the emergence, evolution, and transmission of individual antibiotic resistance genes (ARGs) is essential to develop sustainable strategies combatting this threat. Here, we use metagenomic sequencing to analyse ARGs in 757 sewage samples from 243 cities in 101 countries, collected from 2016 to 2019. We find regional patterns in resistomes, and these differ between subsets corresponding to drug classes and are partly driven by taxonomic variation. The genetic environments of 49 common ARGs are highly diverse, with most common ARGs carried by multiple distinct genomic contexts globally and sometimes on plasmids. Analysis of flanking sequence revealed ARG-specific patterns of dispersal limitation and global transmission. Our data furthermore suggest certain geographies are more prone to transmission events and should receive additional attention.
  •  
2.
  • Naumov, V., et al. (författare)
  • COVIDomic: A multi-modal cloud-based platform for identification of risk factors associated with COVID-19 severity
  • 2021
  • Ingår i: Plos Computational Biology. - : Public Library of Science (PLoS). - 1553-734X .- 1553-7358. ; 17:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Author summary This article introduces COVIDomic, a new integrative multi-omics online platform designed to facilitate the analysis of the large amount of health data collected from COVID-19 patients. The COVIDomic platform includes a user-friendly interface and provides a set of bioinformatics tools for the analysis of multi-modal metatranscriptomic data to determine the origin of the coronavirus strain and the expected severity of the disease. An analytical workflow includes microbial pathogens community analysis, COVID-19 genetic epidemiology and patient stratification. These features allow studying the presence of common microbial organisms, their antibiotic resistance and the severity of the infection, as well as obtaining insights on the geographical locations from which the strain could have originated. Such openly distributed multi-modal platform will greatly accelerate the ongoing COVID-19 research and improve our readiness to respond to other infectious outbreaks. Coronavirus disease 2019 (COVID-19) is an acute infection of the respiratory tract that emerged in December 2019 in Wuhan, China. It was quickly established that both the symptoms and the disease severity may vary from one case to another and several strains of SARS-CoV-2 have been identified. To gain a better understanding of the wide variety of SARS-CoV-2 strains and their associated symptoms, thousands of SARS-CoV-2 genomes have been sequenced in dozens of countries. In this article, we introduce COVIDomic, a multi-omics online platform designed to facilitate the analysis and interpretation of the large amount of health data collected from patients with COVID-19. The COVIDomic platform provides a comprehensive set of bioinformatic tools for the multi-modal metatranscriptomic data analysis of COVID-19 patients to determine the origin of the coronavirus strain and the expected severity of the disease. An integrative analytical workflow, which includes microbial pathogens community analysis, COVID-19 genetic epidemiology and patient stratification, allows to analyze the presence of the most common microbial organisms, their antibiotic resistance, the severity of the infection and the set of the most probable geographical locations from which the studied strain could have originated. The online platform integrates a user friendly interface which allows easy visualization of the results. We envision this tool will not only have immediate implications for management of the ongoing COVID-19 pandemic, but will also improve our readiness to respond to other infectious outbreaks.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy