SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Tegenfeldt Jonas O.) ;pers:(Holm Stefan)"

Sökning: WFRF:(Tegenfeldt Jonas O.) > Holm Stefan

  • Resultat 1-10 av 19
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Xavier, Miguel, et al. (författare)
  • Label-free enrichment of primary human skeletal progenitor cells using deterministic lateral displacement
  • 2019
  • Ingår i: Lab on a Chip. - : Royal Society of Chemistry (RSC). - 1473-0189 .- 1473-0197. ; 19:3, s. 513-523
  • Tidskriftsartikel (refereegranskat)abstract
    • Skeletal stem cells (SSCs) are present in bone marrow (BM) and offer great potential for bone regenerative therapies. However, in the absence of a unique marker, current sorting approaches remain challenging in the quest for simple strategies to deliver SSCs with consistent regeneration and differentiation capacities. Microfluidics offers the possibility to sort cells marker-free, based on intrinsic biophysical properties. Recent studies indicate that SSCs are stiffer than leukocytes and are contained within the larger cell fraction in BM. This paper describes the use of deterministic lateral displacement (DLD) to sort SSCs based on cell size and stiffness. DLD is a technology that uses arrays of micropillars to sort cells based on their diameter. Cell deformation within the device can change the cell size and affect sorting - here evidenced using human cell lines and by fractionation of expanded SSCs. Following sorting, SSCs remained viable and retained their capacity to form clonogenic cultures (CFU-F), indicative of stem cell potential. Additionally, larger BM cells showed enhanced capacity to form CFU-F. These findings support the theory that SSCs are more abundant within the larger BM cell fraction and that DLD, or other size-based approaches, could be used to provide enriched SSC populations with significant implications for stem cell research and translation to the clinic.
  •  
2.
  • Barrett, Michael P., et al. (författare)
  • Microfluidics-based approaches to the isolation of African trypanosomes
  • 2017
  • Ingår i: Pathogens. - : MDPI AG. - 2076-0817. ; 6:4
  • Forskningsöversikt (refereegranskat)abstract
    • African trypanosomes are responsible for significant levels of disease in both humans and animals. The protozoan parasites are free-living flagellates, usually transmitted by arthropod vectors, including the tsetse fly. In the mammalian host they live in the bloodstream and, in the case of human-infectious species, later invade the central nervous system. Diagnosis of the disease requires the positive identification of parasites in the bloodstream. This can be particularly challenging where parasite numbers are low, as is often the case in peripheral blood. Enriching parasites from body fluids is an important part of the diagnostic pathway. As more is learned about the physicochemical properties of trypanosomes, this information can be exploited through use of different microfluidic-based approaches to isolate the parasites from blood or other fluids. Here, we discuss recent advances in the use of microfluidics to separate trypanosomes from blood and to isolate single trypanosomes for analyses including drug screening.
  •  
3.
  • Beech, Jason P., et al. (författare)
  • Cell morphology and deformability in deterministic lateral displacement devices
  • 2011
  • Ingår i: 15th International Conference on Miniaturized Systems for Chemistry and Life Sciences 2011, MicroTAS 2011. - 9781618395955 ; 2, s. 1355-1357
  • Konferensbidrag (refereegranskat)abstract
    • Deterministic Lateral Displacement (DLD) devices have been used to separate particles based on size [1] and shape [2]. Here we show how DLD devices can also be used to separate particles based on their ability to deform under shear forces. Varying experimental conditions allows us to vary the relative contributions of size, morphology and deformability. The ability to distinguish between cells based on deformability with high resolution and throughput, in cheap and simple devices, could find highly interesting and relevant applications, for example in the detection of circulating tumor cells or malaria-infected blood cells.
  •  
4.
  • Beech, Jason P., et al. (författare)
  • Morphology-based sorting-blood cells and parasites
  • 2010
  • Ingår i: 14th International Conference on Miniaturized Systems for Chemistry and Life Sciences 2010, MicroTAS 2010. - 9781618390622 ; 2, s. 1343-1345
  • Konferensbidrag (refereegranskat)abstract
    • Morphology represents a hitherto unexploited source of specificity in microfluidic particle separation and may serve as the basis for label-free particle fractionation. There is a wealth of morphological changes in blood cells due to a wide range of clinical conditions, diseases, medication and other factors. Also, blood-borne parasites differ in morphology from blood cells. We present the use of Deterministic Lateral Displacement to create a chip-based, label-free diagnostic tool, capable of harvesting some of the wealth of information locked away in red blood cell morphology. We also use the device to separate the parasites that cause sleeping sickness from blood.
  •  
5.
  • Beech, Jason P., et al. (författare)
  • Sample preparation for single-cell whole chromosome analysis
  • 2012
  • Ingår i: Proceedings of the 16th International Conference on Miniaturized Systems for Chemistry and Life Sciences, MicroTAS 2012. - 9780979806452 ; , s. 998-999
  • Konferensbidrag (refereegranskat)abstract
    • In this work we present an integrated system for whole chromosome analysis of single bacterium. Using whole genome barcoding techniques, which offer direct and rapid microscopic visualization of the entire genome in one field-of-view, we aim to rapidly identify individual bacterium. We are developing our device to achieve the crucial, and difficult process of isolating a bacterium, removing the DNA in one piece and transferring it to a nano-channel for visualisation. In order to achieve control over the bacteria we encapsulate them in agarose, using flow focusing. The encapsulated bacteria can then be transported in microchannels to proximity with the nanochannels and then chemically lysis can be performed. Following lysis the intact genome can be extracted and transferred to the meandering nanochannel for analysis. We believe this device holds the potential to significantly decrease analysis times for single cell, whole genome analysis with the potential of opening up for automated, high-throughput genome analysis in microfluidic systems.
  •  
6.
  • Beech, Jason, et al. (författare)
  • Sorting cells by size, shape and deformability
  • 2012
  • Ingår i: Lab on a Chip. - : Royal Society of Chemistry (RSC). - 1473-0197 .- 1473-0189. ; 12, s. 1048-1051
  • Tidskriftsartikel (refereegranskat)abstract
    • While size has been widely used as a parameter in cellular separations, in this communication we show how shape and deformability, a mainly untapped source of specificity in preparative and analytical microfluidic devices can be measured and used to separate cells. © 2012 The Royal Society of Chemistry.
  •  
7.
  • Ghasemi, Masoomeh, et al. (författare)
  • Separation of deformable hydrogel microparticles in deterministic lateral displacement devices
  • 2012
  • Ingår i: Proceedings of the 16th International Conference on Miniaturized Systems for Chemistry and Life Sciences, MicroTAS 2012. - 9780979806452 ; , s. 1672-1674
  • Konferensbidrag (refereegranskat)abstract
    • To better understand how deformable and non-spherical particles behave in sorting devices based on deterministic lateral displacement we generate models of biological particles with tunable size, shape and mechanical properties using stop-flow lithography and we explore how these parameters play a role in our separation devices. Hollow and solid cylinders are compared with respect to their deformability and their overall behavior in the device. Future work will expand the approach to a range of particle shapes and to particles with varied hydrogel composition to independently control the mechanical properties of the material.
  •  
8.
  • Henry, Ewan, et al. (författare)
  • Sorting cells by their dynamical properties
  • 2016
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent advances in cell sorting aim at the development of novel methods that are sensitive to various mechanical properties of cells. Microfluidic technologies have a great potential for cell sorting; however, the design of many micro-devices is based on theories developed for rigid spherical particles with size as a separation parameter. Clearly, most bioparticles are non-spherical and deformable and therefore exhibit a much more intricate behavior in fluid flow than rigid spheres. Here, we demonstrate the use of cells' mechanical and dynamical properties as biomarkers for separation by employing a combination of mesoscale hydrodynamic simulations and microfluidic experiments. The dynamic behavior of red blood cells (RBCs) within deterministic lateral displacement (DLD) devices is investigated for different device geometries and viscosity contrasts between the intra-cellular fluid and suspending medium. We find that the viscosity contrast and associated cell dynamics clearly determine the RBC trajectory through a DLD device. Simulation results compare well to experiments and provide new insights into the physical mechanisms which govern the sorting of non-spherical and deformable cells in DLD devices. Finally, we discuss the implications of cell dynamics for sorting schemes based on properties other than cell size, such as mechanics and morphology.
  •  
9.
  • Holm, Stefan H., et al. (författare)
  • A high-throughput deterministic lateral displacement device for rapid and sensitive field-diagnosis of sleeping sickness
  • 2012
  • Ingår i: Proceedings of the 16th International Conference on Miniaturized Systems for Chemistry and Life Sciences, MicroTAS 2012. - 9780979806452 ; , s. 530-532
  • Konferensbidrag (refereegranskat)abstract
    • We present a simple and rapid microfluidic device capable of extracting and concentrating the parasite causing the fatal disease sleeping sickness (SS) from blood. The device is based on deterministic lateral displacement (DLD) and constructed with a single inlet with flow induced by an ordinary syringe. The simplicity is crucial as the device is intended for use in the resource depraved areas where the disease is endemic. With only one inlet an intricate design with multiple depths has been utilized to create a cell free stream from the blood plasma into which the parasites are forced and subsequently collected in a detection region. In order to maximize the sample volume up to 10 device layers were stacked on top of each other which resulted in a throughput of ∼10 μL/min. This allowed for an approximate time per test of below 15 min.
  •  
10.
  • Holm, Stefan H., et al. (författare)
  • Combined density and size-based sorting in deterministic lateral displacement devices
  • 2013
  • Ingår i: 17th International Conference on Miniaturized Systems for Chemistry and Life Sciences, MicroTAS 2013. - 9781632666246 ; 2, s. 1224-1226
  • Konferensbidrag (refereegranskat)abstract
    • We present a deterministic-lateral-displacement (DLD) device that extends the capabilities of this traditionally sizebased particle separation technique to also be sensitive to density. By the use of T-shaped posts instead of the normally cylindrical posts the particle trajectory through the device will be a function of its vertical position which in turn is determined by the buoyancy of the particles. The potential lies in fast sorting of complex biological samples together with diagnosis and treatment-monitoring of diseases affecting cell-density, eg. cancer, sickle-cell anemia and malaria. We demonstrate proof-of-principle of combined size-and-density-based sorting, specifically particles of identical size but different density.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 19

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy