SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Tellgren Roth Åsa) ;lar1:(ki)"

Search: WFRF:(Tellgren Roth Åsa) > Karolinska Institutet

  • Result 1-4 of 4
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Andersson, Annika, et al. (author)
  • Membrane integration and topology of RIFIN and STEVOR proteins of the Plasmodium falciparum parasite
  • 2020
  • In: The FEBS Journal. - : Wiley. - 1742-464X .- 1742-4658. ; 287:13, s. 2744-2762
  • Journal article (peer-reviewed)abstract
    • The malarial parasite Plasmodium exports its own proteins to the cell surfaces of red blood cells (RBCs) during infection. Examples of exported proteins include members of the repetitive interspersed family (RIFIN) and subtelomeric variable open reading frame (STEVOR) family of proteins from Plasmodium falciparum. The presence of these parasite-derived proteins on surfaces of infected RBCs triggers the adhesion of infected cells to uninfected cells (rosetting) and to the vascular endothelium potentially obstructing blood flow. While there is a fair amount of information on the localization of these proteins on the cell surfaces of RBCs, less is known about how they can be exported to the membrane and the topologies they can adopt during the process. The first step of export is plausibly the cotranslational insertion of proteins into the endoplasmic reticulum (ER) of the parasite, and here, we investigate the insertion of three RIFIN and two STEVOR proteins into the ER membrane. We employ a well-established experimental system that uses N-linked glycosylation of sites within the protein as a measure to assess the extent of membrane insertion and the topology it assumes when inserted into the ER membrane. Our results indicate that for all the proteins tested, transmembranes (TMs) 1 and 3 integrate into the membrane, so that the protein assumes an overall topology of Ncyt-Ccyt. We also show that the segment predicted to be TM2 for each of the proteins likely does not reside in the membrane, but is translocated to the lumen.
  •  
2.
  • Ch'ng, Jun-Hong, et al. (author)
  • Epitopes of anti-RIFIN antibodies and characterization of rif-expressing Plasmodium falciparum parasites by RNA sequencing
  • 2017
  • In: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 7
  • Journal article (peer-reviewed)abstract
    • Variable surface antigens of Plasmodium falciparum have been a major research focus since they facilitate parasite sequestration and give rise to deadly malaria complications. Coupled with its potential use as a vaccine candidate, the recent suggestion that the repetitive interspersed families of polypeptides (RIFINs) mediate blood group A rosetting and influence blood group distribution has raised the research profile of these adhesins. Nevertheless, detailed investigations into the functions of this highly diverse multigene family remain hampered by the limited number of validated reagents. In this study, we assess the specificities of three promising polyclonal anti-RIFIN antibodies that were IgG-purified from sera of immunized animals. Their epitope regions were mapped using a 175,000-peptide microarray holding overlapping peptides of the P. falciparum variable surface antigens. Through immunoblotting and immunofluorescence imaging, we show that different antibodies give varying results in different applications/assays. Finally, we authenticate the antibody-based detection of RIFINs in two previously uncharacterized non-rosetting parasite lines by identifying the dominant rif transcripts using RNA sequencing.
  •  
3.
  • Martin-Rodriguez, Alberto J., et al. (author)
  • Comparative Genomics of Cyclic di-GMP Metabolism and Chemosensory Pathways in Shewanella algae Strains : Novel Bacterial Sensory Domains and Functional Insights into Lifestyle Regulation
  • 2022
  • In: mSystems. - : American Society for Microbiology. - 2379-5077. ; 7:2
  • Journal article (peer-reviewed)abstract
    • Shewanella spp. play important ecological and biogeochemical roles, due in part to their versatile metabolism and swift integration of stimuli. While Shewanella spp. are primarily considered environmental microbes, Shewanella algae is increasingly recognized as an occasional human pathogen. S. algae shares the broad metabolic and respiratory repertoire of Shewanella spp. and thrives in similar ecological niches. In S. algae, nitrate and dimethyl sulfoxide (DMSO) respiration promote biofilm formation strain specifically, with potential implication of taxis and cyclic diguanosine monophosphate (c-di-GMP) signaling. Signal transduction systems in S. algae have not been investigated. To fill these knowledge gaps, we provide here an inventory of the c-di-GMP turnover proteome and chemosensory networks of the type strain S. algae CECT 5071 and compare them with those of 41 whole-genome-sequenced clinical and environmental S. algae isolates. Besides comparative analysis of genetic content and identification of laterally transferred genes, the occurrence and topology of c-di-GMP turnover proteins and chemoreceptors were analyzed. We found S. algae strains to encode 61 to 67 c-di-GMP turnover proteins and 28 to 31 chemoreceptors, placing S. algae near the top in terms of these signaling capacities per Mbp of genome. Most c-di-GMP turnover proteins were predicted to be catalytically active; we describe in them six novel N-terminal sensory domains that appear to control their catalytic activity. Overall, our work defines the c-di-GMP and chemosensory signal transduction pathways in S. algae, contributing to a better understanding of its ecophysiology and establishing S. algae as an auspicious model for the analysis of metabolic and signaling pathways within the genus Shewanella. IMPORTANCE Shewanella spp. are widespread aquatic bacteria that include the well-studied freshwater model strain Shewanella oneidensis MR-1. In contrast, the physiology of the marine and occasionally pathogenic species Shewanella algae is poorly understood. Chemosensory and c-di-GMP signal transduction systems integrate environmental stimuli to modulate gene expression, including the switch from a planktonic to sessile lifestyle and pathogenicity. Here, we systematically dissect the c-di-GMP proteome and chemosensory pathways of the type strain S. algae CECT 5071 and 41 additional S. algae isolates. We provide insights into the activity and function of these proteins, including a description of six novel sensory domains. Our work will enable future analyses of the complex, intertwined c-di-GMP metabolism and chemotaxis networks of S. algae and their ecophysiological role.
  •  
4.
  • Tellgren-Roth, Christian, 1971-, et al. (author)
  • Complete Genome Sequence and Methylome of the Type Strain of Shewanella algae
  • 2021
  • In: Microbiology Resource Announcements. - : American Society for Microbiology. - 2576-098X. ; 10:31
  • Journal article (peer-reviewed)abstract
    • We report the complete genome sequence and base modification analysis of the Shewanella algae type strain CECT 5071 (= OK-1 = ATCC 51192 = DSM 9167 = IAM 14159). The genome is composed of a single chromosome of 4,924,764 bp, with a GC content of 53.10%.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-4 of 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view