Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Thébault Elisa) "

Sökning: WFRF:(Thébault Elisa)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
  • Brose, Ulrich, et al. (författare)
  • Predicting the consequences of species lossusing size-structured biodiversity approaches
  • 2017
  • Ingår i: Biological Reviews. - : Wiley-Blackwell. - 1464-7931 .- 1469-185X. ; 92:2, s. 684-697
  • Forskningsöversikt (refereegranskat)abstract
    • Understanding the consequences of species loss in complex ecological communities is one of the great challenges in current biodiversity research. For a long time, this topic has been addressed by traditional biodiversity experiments. Most of these approaches treat species as trait-free, taxonomic units characterizing communities only by species number without accounting for species traits. However, extinctions do not occur at random as there is a clear correlation between extinction risk and species traits. In this review, we assume that large species will be most threatened by extinction and use novel allometric and size-spectrum concepts that include body mass as a primary species trait at the levels of populations and individuals, respectively, to re-assess three classic debates on the relationships between biodiversity and (i) food-web structural complexity, (ii) community dynamic stability, and (iii) ecosystem functioning. Contrasting current expectations, size-structured approaches suggest that the loss of large species, that typically exploit most resource species, may lead to future food webs that are less interwoven and more structured by chains of interactions and compartments. The disruption of natural body-mass distributions maintaining food-web stability may trigger avalanches of secondary extinctions and strong trophic cascades with expected knock-on effects on the functionality of the ecosystems. Therefore, we argue that it is crucial to take into account body size as a species trait when analysing the consequences of biodiversity loss for natural ecosystems. Applying size-structured approaches provides an integrative ecological concept that enables a better understanding of each species' unique role across communities and the causes and consequences of biodiversity loss.
  • Curtsdotter, Alva, 1983- (författare)
  • Extinctions in Ecological Communities : direct and indirect effects of perturbation on biodiversity
  • 2014
  • Doktorsavhandling (övrigt vetenskapligt)abstract
    • In the dawning of what may become Earth’s 6th mass extinction the topic of this thesis, understanding extinction processes and what determines the magnitude of species loss, has become only too relevant. The number of known extinctions (~850) during the last centuries translates to extinction rates elevated above the background rate, matching those of previous mass extinction events. The main drivers of these extinctions have been human land use, introduction of exotic species and overexploitation. Under continued anthropogenic pressure and climate change, the current extinction rates are predicted to increase tenfold.Large perturbations, such as the extinction drivers mentioned above, affects species directly, causing a change in their abundance. As species are not isolated, but connected to each other through a multitude of interactions, the change in abundance of one species can in turn affect others. Thus, in addition to the direct effect, a perturbation can affect a species indirectly through the ecological network in which the species is embedded. With this thesis, I wish to contribute to our basic understanding of these indirect effects and the role they play in determining the magnitude of species loss. All the studies included here are so called in silico experiments, using mathematical models to describe ecological communities and computer simulations to observe the response of these communities to perturbation.When a perturbation is severe enough, a species will be driven to extinction. The loss of a species from a system is in itself a large perturbation, and may result in further extinctions, so called secondary extinctions. The traits of the species initially lost, can be a potential predictor of the magnitude of secondary species loss. In Paper I of this thesis, I show that when making such predictions, it is important to incorporate temporally dynamic species interactions and abundances, in order not to underestimate the importance of certain species, such as top predators.I further show that species traits alone are not particularly good predictors of secondary extinction risk (Paper I), but that in combination with community level properties they are (Paper II). Indeed, there seems to be an interaction such that the specific property making a community prone to secondary species loss, depends on what kind of species was lost in the primary extinction. As different types of perturbation put different types of species at risk of (primary) extinction, this means that the specific property making a community prone to secondary species loss, will depend on the type of perturbation the community is subjected to.One of the predicted main drivers of future species extinction is climate change. If the local climate becomes adverse, a species can either migrate to new and better areas or stay and evolve. Both these processes will be important in determining the magnitude of species loss under climate change. However, migration and evolution do not occur in vacuum – the biotic community in which these processes play out may modulate their effect on biodiversity. In paper III, I show that the strength of competition between species modulates the effect of both dispersal and evolution on the magnitude of species loss under climate change. The three-way interaction between interspecific competition, evolution and dispersal, creates a complex pattern of biodiversity responses, in which both evolution and dispersal can either increase or decrease the magnitude of species loss. Thus, when species interactions are incorporated, it is clear that even though migration and evolution may alleviate the impact of climate change for some species, they may indirectly aggravate the situation for others.In Paper III, the aspect of climate change incorporated in the model is an increase in mean annual temperature. But climate change is also predicted to increase environmental variability. Paper IV shows that species-rich communities are more sensitive to high environmental variability than species-poor ones. The smaller population sizes in the species-rich communities increased the extinction risk connected to population fluctuations driven by the variable environment. Hence, systems such as tropical forests and coral reefs are predicted to be particularly sensitive to the increased variability that may follow with climate change.In Paper IV, primary extinctions of primary producers result in extinction cascades of consumer species, when they lose their prey. However, in reality a consumer species might be able to switch to another prey, and such flexibility has both been observed and suggested as a potential rescue mechanism. But what is beneficial for an individual predator in the short-term can become detrimental to the ecological community in the long-term. Paper V shows that consumer flexibility often led to consumers continuously overexploiting their new prey, in the worst case to the point of system collapse. Thus, the suggested rescue mechanism aggravated the effect of initial species loss, rather than ameliorating it.Overall, the research presented here, underscores the importance of including population dynamics and biotic interactions when studying the effects of perturbation on biodiversity. Many of the results are complex, hard to foresee or even counter-intuitive, arising from the indirect effects of the perturbation being translated through the living web of species interactions.
  • de Vries, Franciska T., et al. (författare)
  • Soil food web properties explain ecosystem services across European land use systems
  • 2013
  • Ingår i: Proceedings of the National Academy of Sciences. - : National Acad Sciences. - 1091-6490. ; 110:35, s. 14296-14301
  • Tidskriftsartikel (refereegranskat)abstract
    • Intensive land use reduces the diversity and abundance of many soil biota, with consequences for the processes that they govern and the ecosystem services that these processes underpin. Relationships between soil biota and ecosystem processes have mostly been found in laboratory experiments and rarely are found in the field. Here, we quantified, across four countries of contrasting climatic and soil conditions in Europe, how differences in soil food web composition resulting from land use systems (intensive wheat rotation, extensive rotation, and permanent grassland) influence the functioning of soils and the ecosystem services that they deliver. Intensive wheat rotation consistently reduced the biomass of all components of the soil food web across all countries. Soil food web properties strongly and consistently predicted processes of C and N cycling across land use systems and geographic locations, and they were a better predictor of these processes than land use. Processes of carbon loss increased with soil food web properties that correlated with soil C content, such as earthworm biomass and fungal/bacterial energy channel ratio, and were greatest in permanent grassland. In contrast, processes of N cycling were explained by soil food web properties independent of land use, such as arbuscular mycorrhizal fungi and bacterial channel biomass. Our quantification of the contribution of soil organisms to processes of C and N cycling across land use systems and geographic locations shows that soil biota need to be included in C and N cycling models and highlights the need to map and conserve soil biodiversity across the world.
  • Tsiafouli, Maria A., et al. (författare)
  • Intensive agriculture reduces soil biodiversity across Europe
  • 2015
  • Ingår i: Global Change Biology. - : Wiley-Blackwell. - 1354-1013 .- 1365-2486. ; 21:2, s. 973-985
  • Tidskriftsartikel (refereegranskat)abstract
    • Soil biodiversity plays a key role in regulating the processes that underpin the delivery of ecosystem goods and services in terrestrial ecosystems. Agricultural intensification is known to change the diversity of individual groups of soil biota, but less is known about how intensification affects biodiversity of the soil food web as a whole, and whether or not these effects may be generalized across regions. We examined biodiversity in soil food webs from grasslands, extensive, and intensive rotations in four agricultural regions across Europe: in Sweden, the UK, the Czech Republic and Greece. Effects of land-use intensity were quantified based on structure and diversity among functional groups in the soil food web, as well as on community-weighted mean body mass of soil fauna. We also elucidate land-use intensity effects on diversity of taxonomic units within taxonomic groups of soil fauna. We found that between regions soil food web diversity measures were variable, but that increasing land-use intensity caused highly consistent responses. In particular, land-use intensification reduced the complexity in the soil food webs, as well as the community-weighted mean body mass of soil fauna. In all regions across Europe, species richness of earthworms, Collembolans, and oribatid mites was negatively affected by increased land-use intensity. The taxonomic distinctness, which is a measure of taxonomic relatedness of species in a community that is independent of species richness, was also reduced by land-use intensification. We conclude that intensive agriculture reduces soil biodiversity, making soil food webs less diverse and composed of smaller bodied organisms. Land-use intensification results in fewer functional groups of soil biota with fewer and taxonomically more closely related species. We discuss how these changes in soil biodiversity due to land-use intensification may threaten the functioning of soil in agricultural production systems.
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy