SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Thalamuthu Anbupalam) "

Sökning: WFRF:(Thalamuthu Anbupalam)

  • Resultat 1-10 av 12
  • [1]2Nästa
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Adams, Hieab H. H., et al. (författare)
  • Novel genetic loci underlying human intracranial volume identified through genome-wide association
  • 2016
  • Ingår i: Nature Neuroscience. - 1097-6256 .- 1546-1726. ; 19:12, s. 1569-1582
  • Tidskriftsartikel (refereegranskat)abstract
    • <p>Intracranial volume reflects the maximally attained brain size during development, and remains stable with loss of tissue in late life. It is highly heritable, but the underlying genes remain largely undetermined. In a genome-wide association study of 32,438 adults, we discovered five previously unknown loci for intracranial volume and confirmed two known signals. Four of the loci were also associated with adult human stature, but these remained associated with intracranial volume after adjusting for height. We found a high genetic correlation with child head circumference (rho(genetic) = 0.748), which indicates a similar genetic background and allowed us to identify four additional loci through meta-analysis (N-combined = 37,345). Variants for intracranial volume were also related to childhood and adult cognitive function, and Parkinson's disease, and were enriched near genes involved in growth pathways, including PI3K-AKT signaling. These findings identify the biological underpinnings of intracranial volume and their link to physiological and pathological traits.</p>
  •  
2.
  • Boraxbekk, Carl-Johan, 1980-, et al. (författare)
  • Investigating the influence of <em>KIBRA</em> and <em>CLSTN2</em> genetic polymorphisms on cross-sectional and longitudinal measures of memory performance and hippocampal volume in older individuals
  • 2015
  • Ingår i: Neuropsychologia. - 0028-3932 .- 1873-3514. ; 78, s. 10-17
  • Tidskriftsartikel (refereegranskat)abstract
    • <p>The variability of episodic memory decline and hippocampal atrophy observed with increasing age may partly be explained by genetic factors. <em>KIBRA</em> (kidney and brain expressed protein) and <em>CLSTN2</em> (calsyntenin 2) are two candidate genes previously linked to episodic memory performance and volume of the hippocampus, a key memory structure. However, whether polymorphisms in these two genes also influence age-related longitudinal memory decline and hippocampal atrophy is still unknown. Using data from two independent cohorts, the Sydney Memory and Ageing Study and the Older Australian Twins Study, we investigated whether the <em>KIBRA</em> and <em>CLSTN2</em> genetic polymorphisms (rs17070145 and rs6439886) are associated with episodic memory performance and hippocampal volume in older adults (65–90 years at baseline). We were able to examine these polymorphisms in relation to memory and hippocampal volume using cross-sectional data and, more importantly, also using longitudinal data (2 years between testing occasions). Overall we did not find support for an association of <em>KIBRA</em> either alone or in combination with <em>CLSTN2</em> with memory performance or hippocampal volume, nor did variation in these genes influence longitudinal memory decline or hippocampal atrophy in two cohorts of older adults.</p>
  •  
3.
  • Davies, Gail, et al. (författare)
  • Study of 300,486 individuals identifies 148 independent genetic loci influencing general cognitive function
  • 2018
  • Ingår i: Nature Communications. - Nature Publishing Group. - 2041-1723 .- 2041-1723. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • <p>General cognitive function is a prominent and relatively stable human trait that is associated with many important life outcomes. We combine cognitive and genetic data from the CHARGE and COGENT consortia, and UK Biobank (total <em>N</em> = 300,486; age 16-102) and find 148 genome-wide significant independent loci (<em>P</em> &lt; 5 x 10<sup>-8</sup>) associated with general cognitive function. Within the novel genetic loci are variants associated with neurodegenerative and neurodevelopmental disorders, physical and psychiatric illnesses, and brain structure. Gene-based analyses find 709 genes associated with general cognitive function. Expression levels across the cortex are associated with general cognitive function. Using polygenic scores, up to 4.3% of variance in general cognitive function is predicted in independent samples. We detect significant genetic overlap between general cognitive function, reaction time, and many health variables including eyesight, hypertension, and longevity. In conclusion we identify novel genetic loci and pathways contributing to the heritability of general cognitive function.</p>
  •  
4.
  • Davies, Gail, et al. (författare)
  • Study of 300,486 individuals identifies 148 independent genetic loci influencing general cognitive function
  • 2018
  • Ingår i: Nature Communications. - 2041-1723 .- 2041-1723. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • <p>General cognitive function is a prominent and relatively stable human trait that is associated with many important life outcomes. We combine cognitive and genetic data from the CHARGE and COGENT consortia, and UK Biobank (total N = 300,486; age 16-102) and find 148 genome-wide significant independent loci (P &lt; 5 x 10(-8)) associated with general cognitive function. Within the novel genetic loci are variants associated with neurodegenerative and neurodevelopmental disorders, physical and psychiatric illnesses, and brain structure. Gene-based analyses find 709 genes associated with general cognitive function. Expression levels across the cortex are associated with general cognitive function. Using polygenic scores, up to 4.3% of variance in general cognitive function is predicted in independent samples. We detect significant genetic overlap between general cognitive function, reaction time, and many health variables including eyesight, hypertension, and longevity. In conclusion we identify novel genetic loci and pathways contributing to the heritability of general cognitive function.</p>
  •  
5.
  • Hibar, Derrek P., et al. (författare)
  • Novel genetic loci associated with hippocampal volume
  • 2017
  • Ingår i: Nature Communications. - 2041-1723 .- 2041-1723. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • <p>The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hippocampal structure here we perform a genome-wide association study (GWAS) of 33,536 individuals and discover six independent loci significantly associated with hippocampal volume, four of them novel. Of the novel loci, three lie within genes (ASTN2, DPP4 and MAST4) and one is found 200 kb upstream of SHH. A hippocampal subfield analysis shows that a locus within the MSRB3 gene shows evidence of a localized effect along the dentate gyrus, subiculum, CA1 and fissure. Further, we show that genetic variants associated with decreased hippocampal volume are also associated with increased risk for Alzheimer's disease (r(g) = -0.155). Our findings suggest novel biological pathways through which human genetic variation influences hippocampal volume and risk for neuropsychiatric illness.</p>
  •  
6.
  • Hibar, Derrek P., et al. (författare)
  • Novel genetic loci associated with hippocampal volume
  • 2017
  • Ingår i: Nature Communications. - 2041-1723 .- 2041-1723. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • <p>The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hippocampal structure here we perform a genome-wide association study (GWAS) of 33,536 individuals and discover six independent loci significantly associated with hippocampal volume, four of them novel. Of the novel loci, three lie within genes (ASTN2, DPP4 and MAST4) and one is found 200 kb upstream of SHH. A hippocampal subfield analysis shows that a locus within the MSRB3 gene shows evidence of a localized effect along the dentate gyrus, subiculum, CA1 and fissure. Further, we show that genetic variants associated with decreased hippocampal volume are also associated with increased risk for Alzheimer's disease (r(g) = -0.155). Our findings suggest novel biological pathways through which human genetic variation influences hippocampal volume and risk for neuropsychiatric illness.</p>
  •  
7.
  • Jia, Tianye, et al. (författare)
  • Epigenome-wide meta-analysis of blood DNA methylation and its association with subcortical volumes : findings from the ENIGMA Epigenetics Working Group.
  • 2019
  • Ingår i: Molecular Psychiatry. - 1359-4184 .- 1476-5578.
  • Tidskriftsartikel (refereegranskat)abstract
    • <p>DNA methylation, which is modulated by both genetic factors and environmental exposures, may offer a unique opportunity to discover novel biomarkers of disease-related brain phenotypes, even when measured in other tissues than brain, such as blood. A few studies of small sample sizes have revealed associations between blood DNA methylation and neuropsychopathology, however, large-scale epigenome-wide association studies (EWAS) are needed to investigate the utility of DNA methylation profiling as a peripheral marker for the brain. Here, in an analysis of eleven international cohorts, totalling 3337 individuals, we report epigenome-wide meta-analyses of blood DNA methylation with volumes of the hippocampus, thalamus and nucleus accumbens (NAcc)-three subcortical regions selected for their associations with disease and heritability and volumetric variability. Analyses of individual CpGs revealed genome-wide significant associations with hippocampal volume at two loci. No significant associations were found for analyses of thalamus and nucleus accumbens volumes. Cluster-based analyses revealed additional differentially methylated regions (DMRs) associated with hippocampal volume. DNA methylation at these loci affected expression of proximal genes involved in learning and memory, stem cell maintenance and differentiation, fatty acid metabolism and type-2 diabetes. These DNA methylation marks, their interaction with genetic variants and their impact on gene expression offer new insights into the relationship between epigenetic variation and brain structure and may provide the basis for biomarker discovery in neurodegeneration and neuropsychiatric conditions.</p>
  •  
8.
  • Low, Yen Ling, et al. (författare)
  • Multi-Variant Pathway Association Analysis Reveals the Importance of Genetic Determinants of Estrogen Metabolism in Breast and Endometrial Cancer Susceptibility
  • 2010
  • Ingår i: PLoS genetics. - 1553-7390. ; 6:7, s. e1001012
  • Tidskriftsartikel (refereegranskat)abstract
    • <p>Despite the central role of estrogen exposure in breast and endometrial cancer development and numerous studies of genes in the estrogen metabolic pathway, polymorphisms within the pathway have not been consistently associated with these cancers. We posit that this is due to the complexity of multiple weak genetic effects within the metabolic pathway that can only be effectively detected through multi-variant analysis. We conducted a comprehensive association analysis of the estrogen metabolic pathway by interrogating 239 tagSNPs within 35 genes of the pathway in three tumor samples. The discovery sample consisted of 1,596 breast cancer cases, 719 endometrial cancer cases, and 1,730 controls from Sweden; and the validation sample included 2,245 breast cancer cases and 1,287 controls from Finland. We performed admixture maximum likelihood (AML)-based global tests to evaluate the cumulative effect from multiple SNPs within the whole metabolic pathway and three sub-pathways for androgen synthesis, androgen-to-estrogen conversion, and estrogen removal. In the discovery sample, although no single polymorphism was significant after correction for multiple testing, the pathway-based AML global test suggested association with both breast (rho(global) = 0.034) and endometrial (rho(global) = 0.052) cancers. Further testing revealed the association to be focused on polymorphisms within the androgen-to-estrogen conversion sub-pathway, for both breast (rho(global) = 0.008) and endometrial cancer (rho(global) = 0.014). The sub-pathway association was validated in the Finnish sample of breast cancer (rho(global) = 0.015). Further tumor subtype analysis demonstrated that the association of the androgen-to-estrogen conversion sub-pathway was confined to postmenopausal women with sporadic estrogen receptor positive tumors (rho(global) = 0.0003). Gene-based AML analysis suggested CYP19A1 and UGT2B4 to be the major players within the sub-pathway. Our study indicates that the composite genetic determinants related to the androgen-estrogen conversion are important for the induction of two hormone-associated cancers, particularly for the hormone-driven breast tumour subtypes.</p>
  •  
9.
  • Thompson, Paul M., et al. (författare)
  • The ENIGMA Consortium : large-scale collaborative analyses of neuroimaging and genetic data
  • 2014
  • Ingår i: BRAIN IMAGING BEHAV. - 1931-7557. ; 8:2, s. 153-182
  • Tidskriftsartikel (refereegranskat)abstract
    • <p>The Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) Consortium is a collaborative network of researchers working together on a range of large-scale studies that integrate data from 70 institutions worldwide. Organized into Working Groups that tackle questions in neuroscience, genetics, and medicine, ENIGMA studies have analyzed neuroimaging data from over 12,826 subjects. In addition, data from 12,171 individuals were provided by the CHARGE consortium for replication of findings, in a total of 24,997 subjects. By meta-analyzing results from many sites, ENIGMA has detected factors that affect the brain that no individual site could detect on its own, and that require larger numbers of subjects than any individual neuroimaging study has currently collected. ENIGMA's first project was a genome-wide association study identifying common variants in the genome associated with hippocampal volume or intracranial volume. Continuing work is exploring genetic associations with subcortical volumes (ENIGMA2) and white matter microstructure (ENIGMA-DTI). Working groups also focus on understanding how schizophrenia, bipolar illness, major depression and attention deficit/hyperactivity disorder (ADHD) affect the brain. We review the current progress of the ENIGMA Consortium, along with challenges and unexpected discoveries made on the way.</p>
  •  
10.
  • van der Meer, Dennis, et al. (författare)
  • Association of Copy Number Variation of the 15q11.2 BP1-BP2 Region With Cortical and Subcortical Morphology and Cognition
  • 2020
  • Ingår i: JAMA psychiatry. - 2168-6238 .- 2168-622X. ; 77:4, s. 420-430
  • Tidskriftsartikel (refereegranskat)abstract
    • <p><strong>Importance:</strong> Recurrent microdeletions and duplications in the genomic region 15q11.2 between breakpoints 1 (BP1) and 2 (BP2) are associated with neurodevelopmental disorders. These structural variants are present in 0.5% to 1.0% of the population, making 15q11.2 BP1-BP2 the site of the most prevalent known pathogenic copy number variation (CNV). It is unknown to what extent this CNV influences brain structure and affects cognitive abilities.</p><p><strong>Objective:</strong> To determine the association of the 15q11.2 BP1-BP2 deletion and duplication CNVs with cortical and subcortical brain morphology and cognitive task performance.</p><p><strong>Design, Setting, and Participants:</strong> In this genetic association study, T1-weighted brain magnetic resonance imaging were combined with genetic data from the ENIGMA-CNV consortium and the UK Biobank, with a replication cohort from Iceland. In total, 203 deletion carriers, 45 247 noncarriers, and 306 duplication carriers were included. Data were collected from August 2015 to April 2019, and data were analyzed from September 2018 to September 2019.</p><p><strong>Main Outcomes and Measures:</strong> The associations of the CNV with global and regional measures of surface area and cortical thickness as well as subcortical volumes were investigated, correcting for age, age2, sex, scanner, and intracranial volume. Additionally, measures of cognitive ability were analyzed in the full UK Biobank cohort.</p><p><strong>Results:</strong> Of 45 756 included individuals, the mean (SD) age was 55.8 (18.3) years, and 23 754 (51.9%) were female. Compared with noncarriers, deletion carriers had a lower surface area (Cohen d = -0.41; SE, 0.08; P = 4.9 × 10-8), thicker cortex (Cohen d = 0.36; SE, 0.07; P = 1.3 × 10-7), and a smaller nucleus accumbens (Cohen d = -0.27; SE, 0.07; P = 7.3 × 10-5). There was also a significant negative dose response on cortical thickness (β = -0.24; SE, 0.05; P = 6.8 × 10-7). Regional cortical analyses showed a localization of the effects to the frontal, cingulate, and parietal lobes. Further, cognitive ability was lower for deletion carriers compared with noncarriers on 5 of 7 tasks.</p><p><strong>Conclusions and Relevance:</strong> These findings, from the largest CNV neuroimaging study to date, provide evidence that 15q11.2 BP1-BP2 structural variation is associated with brain morphology and cognition, with deletion carriers being particularly affected. The pattern of results fits with known molecular functions of genes in the 15q11.2 BP1-BP2 region and suggests involvement of these genes in neuronal plasticity. These neurobiological effects likely contribute to the association of this CNV with neurodevelopmental disorders.</p>
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 12
  • [1]2Nästa
Åtkomst
fritt online (5)
Typ av publikation
tidskriftsartikel (12)
Typ av innehåll
refereegranskat (12)
Författare/redaktör
Mather, Karen A. (9)
Armstrong, Nicola J. (8)
Ames, David (8)
Brodaty, Henry (8)
Amin, Najaf (7)
Luciano, Michelle (7)
visa fler...
Andreassen, Ole A. (7)
Jahanshad, Neda (6)
Den Braber, Anouk (6)
Ehrlich, Stefan (6)
Giddaluru, Sudheer (6)
Tordesillas-Gutierre ... (6)
Boomsma, Dorret I. (6)
Corvin, Aiden (6)
Crespo-Facorro, Bene ... (6)
Dale, Anders M. (6)
Adams, Hieab H. H. (5)
Hibar, Derrek P. (5)
Trompet, Stella (5)
Seshadri, Sudha (5)
Desrivieres, Sylvane (5)
Van der Lee, Sven J. (5)
Bis, Joshua C. (5)
Ching, Christopher R ... (5)
Gottesman, Rebecca F ... (5)
Griswold, Michael E. (5)
Hofer, Edith (5)
Liewald, David C. M. (5)
Roiz-Santianez, Robe ... (5)
Satizabal, Claudia L ... (5)
Schork, Andrew J. (5)
Shin, Jean (5)
Smith, Albert V. (5)
Strike, Lachlan T. (5)
Teumer, Alexander (5)
Westlye, Lars T. (5)
Yang, Jingyun (5)
Agartz, Ingrid (5)
Amouyel, Philippe (5)
Assareh, Amelia A. (5)
Bastin, Mark E. (5)
Bennett, David A. (5)
Blangero, John (5)
Brouwer, Rachel M. (5)
Cahn, Wiepke (5)
Calhoun, Vince D. (5)
Cavalleri, Gianpiero ... (5)
Cichon, Sven (5)
Curran, Joanne E. (5)
De Geus, Eco J. C. (5)
visa färre...
Lärosäte
Umeå universitet (7)
Uppsala universitet (3)
Göteborgs universitet (1)
Lunds universitet (1)
Stockholms universitet (1)
Språk
Engelska (12)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (11)
Naturvetenskap (3)

År

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy