SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Thomas D.) ;mspu:(doctoralthesis);hsvcat:3"

Sökning: WFRF:(Thomas D.) > Doktorsavhandling > Medicin och hälsovetenskap

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Lehmann, Manuela, 1986- (författare)
  • SOD1 misfolding and aggregation in ALS : in the light of conformation-specific antibodies
  • 2019
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Mutations in the superoxide dismutase 1 (SOD1) gene are linked to the progressive neurodegenerative disease amyotrophic lateral sclerosis (ALS). ALS-associated mutations affect the stability of the SOD1 protein and promote its unfolding. As a consequence, disordered SOD1 species can misfold and accumulate into insoluble aggregates. Cytoplasmic inclusions containing misfolded SOD1 are a hallmark of ALS pathology in patients as well as transgenic mouse models. However, it remains unclear, which SOD1 species are pathogenic and how they arise and contribute to the disease.The aim of this thesis was to use antibodies as tools to study the role of disordered and aggregated SOD1 species in ALS. These antibodies recognize epitopes exposed in disordered SOD1 species and hence, discriminate between natively folded SOD1 and the disordered or misfolded protein.SOD1 is expressed in all cell types, but aggregates of misfolded SOD1 are predominantly found in motor neurons and associated glial cells in the spinal cord of ALS patients. To understand why misfolded SOD1 targets the motor system, we used ELISA and immunocapture methods to quantify soluble SOD1 species in patient-derived cell models of ALS. The highest levels of soluble disordered SOD1 were detected in induced pluripotent stem cell (iPSC)-derived motor neuron and astrocytes cultures (MNACs) compared to fibroblasts, iPSCs and sensory neuron cultures. These results suggest that the selective vulnerability of motor areas to SOD1-ALS could derive from an enhanced burden of disordered SOD1.To understand factors that might promote SOD1 unfolding, we focussed on the disulfide bond that is required for the stability of natively folded SOD1. Formation of the bond is oxygen-dependent and reduction of the bond promotes SOD1 unfolding. We studied the stability of SOD1 in patient-derived cells exposed to lowered oxygen tensions. This induced increases in disulfide-reduced, disordered mutant and wild-type SOD1. The response was time- and concentration-dependent and more pronounced in MNACs, where even increased aggregation of mutant SOD1 was observed. These results are consistent with the enhanced vulnerability of the motor system in ALS and suggest that conditions causing impaired oxygen perfusion could contribute to the initiation and progression of the disease.Inclusions containing aggregated misfolded wild-type SOD1 have been found in sporadic ALS (sALS) patients without SOD1 mutations and those carrying mutations in genes other than SOD1. However, other groups have reported contrasting results and the contribution of misfolded wild-type SOD1 to ALS pathology is controversial. Guidelines for preservation, storage, and analysis of tissues under standardized conditions would facilitate the comparison of results between different laboratories. We established an optimized immunohistochemistry protocol to detect misfolded wild-type SOD1 in paraffin-embedded spinal cord samples from sALS patients. We also developed a method to immunocapture disordered SOD1 from frozen post-mortem tissue. High, but variable, levels of disordered SOD1 were detected in spinal cords from sALS patients. Our data support a possible pathological role of misfolded wild-type SOD1 in sALS.Recent evidence suggests that SOD1 aggregates can induce templated aggregation of disordered SOD1 and spread from cell-to-cell via a prion-like mechanism. To test if antibodies could block this process in vivo, we conducted an immunotherapy study in a model of prion-like spread, where SOD1 aggregate seeds are inoculated into the lumbar spinal cord of SOD1G85R transgenic mice and lead to accelerated disease onset and progression. Novel monoclonal antibodies (mAb) against disordered domains of SOD1 aggregates were developed and validated for their reactivity to disordered and aggregated SOD1 species in vitro and in vivo. Immunotherapy using a mAb against the C-terminal end of SOD1 attenuated the onset and progression of prion-like SOD1 spread. However, no effect was seen on onset, duration or progression of the underlying disease. This suggests that, under the conditions tested, immunotherapy against disordered domains of SOD1 does not affect intracellular aggregation and additional strategies might be needed to reduce intracellular accumulation of misfolded SOD1 aggregation.In conclusion, we show that conformation-specific antibodies are powerful tools to investigate disordered and potentially pathogenic species of SOD1 in various biochemical, cellular and in vivo contexts. The development of the novel immunocapture strategy could facilitate future research on characterizing SOD1 aggregates from mouse tissues, patient-derived cells or post-mortem tissues with the goal of determining their role in ALS disease pathogenesis.
  •  
2.
  • Matthiesen, Isabelle (författare)
  • Recreating the microenvironment of the neurovascular unit
  • 2022
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The neurovascular unit (NVU) comprises the blood-brain-barrier (BBB) and its surrounding astrocytes, pericytes and neurons that are embedded in the extracellular matrix (ECM). As the main function of the BBB is to protect the brain from inlet of pathogens and toxins, the specialized endothelial cells that keep the barrier tight will also hinder the passage of pharmaceuticals. Understanding the detailed microenvironment and cellular interactions involved in the development of the neurovascular unit is, therefore, an important step towards designing CNS-targeting pharmaceuticals that can pass into the brain. At the same time, the initial steps of pharmaceutical development often involve the use of animal based in vitro models with poor human translation; thus, there is a great need for novel methods to better mimic the complexity of the human NVU. Apart from conventional cell culture models, the use of micro-engineered devices, microphysiological systems (MPS), have gained popularity. The use of MPS allows for fabrication of tissue-like structures using stem cells and provide more in vivo-like parameters in terms of physical cues and dynamic flow. Various materials have been explored for chip fabrication, and biological and synthetic ECM-mimicking hydrogels have been developed for cell encapsulation. Unfortunately, models developed to date often lack either: i) relevant and reproducible cell sources, ii) materials that allow for easy chip fabrication where sensors can be integrated to understand metabolic effects and barrier integrity, or iii) animal-free defined ECM-mimicking scaffolds that support the culture of sensitive cells. This thesis presents an isogenic model of the BBB using iPSC-derived endothelial cells and astrocytes cultured in a MPS made from the non-absorbing polymer OSTE+ that allows for easy fabrication and integration of interdigitated gold electrodes for continuous barrier integrity monitoring. The model presents barrier-protective effects of the BBB-penetrating drug NACA. To better understand the metabolic attributes of astrocytes, a flow-cell sensor is evaluated for the measurement of glucose and lactate turnover during a ketogenic diet. The results imply that such a sensor is valuable for the measurement of metabolic changes and can, in the future, be integrated into MPSs.Furthermore, a model of early neuronal development is realized by using defined copper-free click chemistry to conjugate laminin to a hyaluronic-based hydrogel system for the differentiation of neuroepithelial stem cells. The use of the hydrogel is validated for bioprinting, and the first-ever printed neuroepithelial stem cells are presented. In another study astrocyte 3D culture and bioprinting is evaluated in peptide conjugated hyaluronic-based hydrogels. Unique attachment and spreading of human fetal astrocytes is observed while the common glioblastoma U87 cells display a rounded up morphology. The results of the hydrogel study imply that the defined chemistry of the hydrogel is suitable for both neuroepithelial stem cells, U87 and fetal primary astrocytes, and can in the future be integrated into MPS to circumvent the use of animal derived matrices. In summary, these results provide solutions to some of the problems to date and lay the ground work for the continuation of the development of human-relevant MPS of the NVU.
  •  
3.
  • Mukwaya, Anthony (författare)
  • Regulation of inflammation and angiogenesis in the cornea
  • 2018
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Inflammation and angiogenesis, the growth of new blood vessels from pre-existing ones, are involved in tumor growth, ocular diseases and wound healing. In ocular angiogenesis, new pathological vessels grow into a specific eye tissue, leak fluid, and disrupt vision. The development of safe and effective therapies for ocular angiogenesis is of great importance for preventing blindness, given that current treatments have limited efficacy or are associated with undesirable side effects. The search for alternative treatment targets requires a deeper understanding of inflammation and how it can lead to angiogenesis in the eye in pathologic situations. This thesis provides new insights into the regulation of inflammation and angiogenesis, particularly at the gene expression and phenotypic levels, in different situations characterized by angiogenesis of the cornea, often called corneal neovascularization. For instance, specific genes and pathways are either endogenously activated or suppressed during active inflammation, wound healing, and during resolution of inflammation and angiogenesis, serving as potential targets to modulate the inflammatory and angiogenic response. In addition, as part of the healing response to restore corneal transparency, inflammation and angiogenesis subside with time in the cornea. In this context, LXR/RXR signaling was found to be activated in a time-dependent manner, to potentially regulate resolution of inflammation and angiogenesis. During regression of new angiogenic capillaries, ghost vessels and empty basement membrane sleeves are formed, which can persist in the cornea for a long time. Here, ghost vessels were found to facilitate subsequent revascularization of the cornea, while empty basement membrane sleeves did not revascularize. The revascularization response observed here was characterised by vasodilation, increased inflammatory cell infiltration and by sprouting at the front of the reperfused vessels. Importantly, reactive oxygen species and nitrous oxide signaling among other pro-inflammatory pathways were activated, and at the same time anti-inflammatory LXR/RXR signaling was inhibited. The interplay between activation and inhibition of these pathways highlights potential mechanisms that regulate corneal revascularization. When treating corneal neovascularization clinically, corticosteroids are in widespread use due to their effectiveness. To minimize the many undesirable side effects associated with corticosteroid use, however, identifying new and more selective agents is of great importance. Here, it was observed that corticosteroids not only suppressed pro-inflammatory chemokines and cytokines, but also activated the classical complement pathway. Classical complement may represent a candidate for further selective therapeutic manipulation to investigate its effect on treatment of corneal neovascularization.In summary, this thesis identifies genes, pathways, and phenotypic responses involved in sprouting and remodeling of corneal capillaries, highlights novel pathways and factors that may regulate inflammation and angiogenesis in the cornea, and provides insights into regulation of capillary regression and reactivation. Further investigation of these regulatory mechanisms may offer alternative and effective treatment targets for the treatment of corneal inflammation and angiogenesis.
  •  
4.
  • Ingo, Elisabeth, 1987- (författare)
  • Climbing up the hearing rehabilitation ladder
  • 2019
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Hearing impairment is a major public health problem, affecting communication and participation, and is associated with a range of health problems. Most individuals with perceived hearing impairment do not seek help, do not opt for rehabilitation (hearing aids), and do not use prescribed hearing aids adequately. Reducing the impact of hearing impairment and supporting healthy aging are important public health goals. Motivation, access to hearing health care, and poor societal awareness about hearing impairment, consequences, and rehabilitation options influence help-seeking. Offering online hearing screening has been proposed to improve hearing help-seeking, access to hearing health care, and to increase public knowledge about hearing and hearing impairment. Applying theories from health psychology (i.e. the Stages of change model) could help audiologists and other hearing health care professionals understand the psychological barriers that prevent people with hearing problems to seek help and take up rehabilitation. The overarching aim of this thesis was to investigate behaviors related to hearing rehabilitation (help-seeking, hearing aid uptake, and hearing aid use) in adults who fail an online hearing screening. A second aim was to explore the usefulness of the Stages of change model in predicting hearing rehabilitation related behavior in a self-selected online hearing screening sample. Studies I–IV show tentative support for offering online hearing screening and for supplementary interventions for increasing help-seeking and provide tentative support for Stages of change as a useful classification tool to indicate individual needs for further information and guidance. Future studies should contemplate integrating screening for multiple health-related factors associated with hearing impairment and to provide a clear and tailored pathway for each participant (e.g. referral to adequate health care or equivalent online intervention).
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy