SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Thomas Gilles) ;pers:(Cox David G.)"

Sökning: WFRF:(Thomas Gilles) > Cox David G.

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bernatsky, Sasha, et al. (författare)
  • Lupus-related single nucleotide polymorphisms and risk of diffuse large B-cell lymphoma
  • 2017
  • Ingår i: Lupus Science and Medicine. - : BMJ. - 2053-8790. ; 4:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: Determinants of the increased risk of diffuse large B-cell lymphoma (DLBCL) in SLE are unclear. Using data from a recent lymphoma genome-wide association study (GWAS), we assessed whether certain lupus-related single nucleotide polymorphisms (SNPs) were also associated with DLBCL. Methods: GWAS data on European Caucasians from the International Lymphoma Epidemiology Consortium (InterLymph) provided a total of 3857 DLBCL cases and 7666 general-population controls. Data were pooled in a random-effects meta-analysis. Results: Among the 28 SLE-related SNPs investigated, the two most convincingly associated with risk of DLBCL included the CD40 SLE risk allele rs4810485 on chromosome 20q13 (OR per risk allele=1.09, 95% CI 1.02 to 1.16, p=0.0134), and the HLA SLE risk allele rs1270942 on chromosome 6p21.33 (OR per risk allele=1.17, 95% CI 1.01 to 1.36, p=0.0362). Of additional possible interest were rs2205960 and rs12537284. The rs2205960 SNP, related to a cytokine of the tumour necrosis factor superfamily TNFSF4, was associated with an OR per risk allele of 1.07, 95% CI 1.00 to 1.16, p=0.0549. The OR for the rs12537284 (chromosome 7q32, IRF5 gene) risk allele was 1.08, 95% CI 0.99 to 1.18, p=0.0765. Conclusions: These data suggest several plausible genetic links between DLBCL and SLE.
  •  
2.
  • Machiela, Mitchell J., et al. (författare)
  • Genetically predicted longer telomere length is associated with increased risk of B-cell lymphoma subtypes
  • 2016
  • Ingår i: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 25:8, s. 1663-1676
  • Tidskriftsartikel (refereegranskat)abstract
    • Evidence from a small number of studies suggests that longer telomere length measured in peripheral leukocytes is associated with an increased risk of non-Hodgkin lymphoma (NHL). However, these studies may be biased by reverse causation, confounded by unmeasured environmental exposures and might miss time points for which prospective telomere measurement would best reveal a relationship between telomere length and NHL risk. We performed an analysis of genetically inferred telomere length and NHL risk in a study of 10 102 NHL cases of the four most common B-cell histologic types and 9562 controls using a genetic risk score (GRS) comprising nine telomere length-associated single-nucleotide polymorphisms. This approach uses existing genotype data and estimates telomere length by weighing the number of telomere length-associated variant alleles an individual carries with the published change in kb of telomere length. The analysis of the telomere length GRS resulted in an association between longer telomere length and increased NHL risk [four B-cell histologic types combined; odds ratio (OR) = 1.49, 95% CI 1.22-1.82, P-value = 8.5 x 10(-5)]. Subtype-specific analyses indicated that chronic lymphocytic leukemia or small lymphocytic lymphoma (CLL/SLL) was the principal NHL subtype contributing to this association (OR = 2.60, 95% CI 1.93-3.51, P-value = 4.0 x 10(-10)). Significant interactions were observed across strata of sex for CLL/SLL and marginal zone lymphoma subtypes as well as age for the follicular lymphoma subtype. Our results indicate that a genetic background that favors longer telomere length may increase NHL risk, particularly risk of CLL/SLL, and are consistent with earlier studies relating longer telomere length with increased NHL risk.
  •  
3.
  • Berndt, Sonja, I, et al. (författare)
  • Distinct germline genetic susceptibility profiles identified for common non-Hodgkin lymphoma subtypes
  • 2022
  • Ingår i: Leukemia. - : Springer Nature. - 0887-6924 .- 1476-5551. ; 36:12, s. 2835-2844
  • Tidskriftsartikel (refereegranskat)abstract
    • Lymphoma risk is elevated for relatives with common non-Hodgkin lymphoma (NHL) subtypes, suggesting shared genetic susceptibility across subtypes. To evaluate the extent of mutual heritability among NHL subtypes and discover novel loci shared among subtypes, we analyzed data from eight genome-wide association studies within the InterLymph Consortium, including 10,629 cases and 9505 controls. We utilized Association analysis based on SubSETs (ASSET) to discover loci for subsets of NHL subtypes and evaluated shared heritability across the genome using Genome-wide Complex Trait Analysis (GCTA) and polygenic risk scores. We discovered 17 genome-wide significant loci (P < 5 × 10−8) for subsets of NHL subtypes, including a novel locus at 10q23.33 (HHEX) (P = 3.27 × 10−9). Most subset associations were driven primarily by only one subtype. Genome-wide genetic correlations between pairs of subtypes varied broadly from 0.20 to 0.86, suggesting substantial heterogeneity in the extent of shared heritability among subtypes. Polygenic risk score analyses of established loci for different lymphoid malignancies identified strong associations with some NHL subtypes (P < 5 × 10−8), but weak or null associations with others. Although our analyses suggest partially shared heritability and biological pathways, they reveal substantial heterogeneity among NHL subtypes with each having its own distinct germline genetic architecture.
  •  
4.
  • Canzian, Federico, et al. (författare)
  • Comprehensive analysis of common genetic variation in 61 genes related to steroid hormone and insulin-like growth factor-I metabolism and breast cancer risk in the NCI breast and prostate cancer cohort consortium.
  • 2010
  • Ingår i: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 19:19, s. 3873-84
  • Tidskriftsartikel (refereegranskat)abstract
    • There is extensive evidence that increases in blood and tissue concentrations of steroid hormones and of insulin-like growth factor I (IGF-I) are associated with breast cancer risk. However, studies of common variation in genes involved in steroid hormone and IGF-I metabolism have yet to provide convincing evidence that such variants predict breast cancer risk. The Breast and Prostate Cancer Cohort Consortium (BPC3) is a collaboration of large US and European cohorts. We genotyped 1416 tagging single nucleotide polymorphisms (SNPs) in 37 steroid hormone metabolism genes and 24 IGF-I pathway genes in 6292 cases of breast cancer and 8135 controls, mostly Caucasian, postmenopausal women from the BPC3. We also imputed 3921 additional SNPs in the regions of interest. None of the SNPs tested was significantly associated with breast cancer risk, after correction for multiple comparisons. The results remained null when cases and controls were stratified by age at diagnosis/recruitment, advanced or nonadvanced disease, body mass index, with or without in situ cases; or restricted to Caucasians. Among 770 estrogen receptor-negative cases, an SNP located 3' of growth hormone receptor (GHR) was marginally associated with increased risk after correction for multiple testing (P(trend) = 1.5 × 10(-4)). We found no significant overall associations between breast cancer and common germline variation in 61 genes involved in steroid hormone and IGF-I metabolism in this large, comprehensive study. Although previous studies have shown that variations in these genes can influence endogenous hormone levels, the magnitude of the effect of single SNPs does not appear to be sufficient to alter breast cancer risk.
  •  
5.
  • Canzian, Federico, et al. (författare)
  • Genetic polymorphisms of the GNRH1 and GNRHR genes and risk of breast cancer in the National Cancer Institute Breast and Prostate Cancer Cohort Consortium (BPC3).
  • 2009
  • Ingår i: BMC cancer. - : Springer Science and Business Media LLC. - 1471-2407. ; 9, s. 257-
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Gonadotropin releasing hormone (GNRH1) triggers the release of follicle stimulating hormone and luteinizing hormone from the pituitary. Genetic variants in the gene encoding GNRH1 or its receptor may influence breast cancer risk by modulating production of ovarian steroid hormones. We studied the association between breast cancer risk and polymorphisms in genes that code for GNRH1 and its receptor (GNRHR) in the large National Cancer Institute Breast and Prostate Cancer Cohort Consortium (NCI-BPC3). METHODS: We sequenced exons of GNRH1 and GNRHR in 95 invasive breast cancer cases. Resulting single nucleotide polymorphisms (SNPs) were genotyped and used to identify haplotype-tagging SNPs (htSNPS) in a panel of 349 healthy women. The htSNPs were genotyped in 5,603 invasive breast cancer cases and 7,480 controls from the Cancer Prevention Study-II (CPS-II), European Prospective Investigation on Cancer and Nutrition (EPIC), Multiethnic Cohort (MEC), Nurses' Health Study (NHS), and Women's Health Study (WHS). Circulating levels of sex steroids (androstenedione, estradiol, estrone and testosterone) were also measured in 4713 study subjects. RESULTS: Breast cancer risk was not associated with any polymorphism or haplotype in the GNRH1 and GNRHR genes, nor were there any statistically significant interactions with known breast cancer risk factors. Polymorphisms in these two genes were not strongly associated with circulating hormone levels. CONCLUSION: Common variants of the GNRH1 and GNRHR genes are not associated with risk of invasive breast cancer in Caucasians.
  •  
6.
  • Din, Lennox, et al. (författare)
  • Genetic overlap between autoimmune diseases and non-Hodgkin lymphoma subtypes
  • 2019
  • Ingår i: Genetic Epidemiology. - : WILEY. - 0741-0395 .- 1098-2272. ; 43:7, s. 844-863
  • Tidskriftsartikel (refereegranskat)abstract
    • Epidemiologic studies show an increased risk of non-Hodgkin lymphoma (NHL) in patients with autoimmune disease (AD), due to a combination of shared environmental factors and/or genetic factors, or a causative cascade: chronic inflammation/antigen-stimulation in one disease leads to another. Here we assess shared genetic risk in genome-wide-association-studies (GWAS). Secondary analysis of GWAS of NHL subtypes (chronic lymphocytic leukemia, diffuse large B-cell lymphoma, follicular lymphoma, and marginal zone lymphoma) and ADs (rheumatoid arthritis, systemic lupus erythematosus, and multiple sclerosis). Shared genetic risk was assessed by (a) description of regional genetic of overlap, (b) polygenic risk score (PRS), (c)"diseasome", (d)meta-analysis. Descriptive analysis revealed few shared genetic factors between each AD and each NHL subtype. The PRS of ADs were not increased in NHL patients (nor vice versa). In the diseasome, NHLs shared more genetic etiology with ADs than solid cancers (p =.0041). A meta-analysis (combing AD with NHL) implicated genes of apoptosis and telomere length. This GWAS-based analysis four NHL subtypes and three ADs revealed few weakly-associated shared loci, explaining little total risk. This suggests common genetic variation, as assessed by GWAS in these sample sizes, may not be the primary explanation for the link between these ADs and NHLs.
  •  
7.
  • Dossus, Laure, et al. (författare)
  • PTGS2 and IL6 genetic variation and risk of breast and prostate cancer : results from the Breast and Prostate Cancer Cohort Consortium (BPC3)
  • 2010
  • Ingår i: Carcinogenesis. - : Oxford University Press (OUP). - 0143-3334 .- 1460-2180. ; 31:3, s. 455-461
  • Tidskriftsartikel (refereegranskat)abstract
    • Genes involved in the inflammation pathway have been associated with cancer risk. Genetic variants in the interleukin-6 (IL6) and prostaglandin-endoperoxide synthase-2 (PTGS2, encoding for the COX-2 enzyme) genes, in particular, have been related to several cancer types, including breast and prostate cancers. We conducted a study within the Breast and Prostate Cancer Cohort Consortium to examine the association between IL6 and PTGS2 polymorphisms and breast and prostate cancer risk. Twenty-seven polymorphisms, selected by pairwise tagging, were genotyped on 6292 breast cancer cases and 8135 matched controls and 8008 prostate cancer cases and 8604 matched controls. The large sample sizes and comprehensive single nucleotide polymorphism tagging in this study gave us excellent power to detect modest effects for common variants. After adjustment for multiple testing, none of the associations examined remained statistically significant at P = 0.01. In analyses not adjusted for multiple testing, one IL6 polymorphism (rs6949149) was marginally associated with breast cancer risk (TT versus GG, odds ratios (OR): 1.32; 99% confidence intervals (CI): 1.00-1.74, P(trend) = 0.003) and two were marginally associated with prostate cancer risk (rs6969502-AA versus rs6969502-GG, OR: 0.87, 99% CI: 0.75-1.02; P(trend) = 0.002 and rs7805828-AA versus rs7805828-GG, OR: 1.11, 99% CI: 0.99-1.26; P(trend) = 0.007). An increase in breast cancer risk was observed for the PTGS2 polymorphism rs7550380 (TT versus GG, OR: 1.38, 99% CI: 1.04-1.83). No association was observed between PTGS2 polymorphisms and prostate cancer risk. In conclusion, common genetic variation in these two genes might play at best a limited role in breast and prostate cancers.
  •  
8.
  •  
9.
  • Moore, Amy, et al. (författare)
  • Genetically Determined Height and Risk of Non-hodgkin Lymphoma
  • 2020
  • Ingår i: Frontiers in Oncology. - : FRONTIERS MEDIA SA. - 2234-943X. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Although the evidence is not consistent, epidemiologic studies have suggested that taller adult height may be associated with an increased risk of some non-Hodgkin lymphoma (NHL) subtypes. Height is largely determined by genetic factors, but how these genetic factors may contribute to NHL risk is unknown. We investigated the relationship between genetic determinants of height and NHL risk using data from eight genome-wide association studies (GWAS) comprising 10,629 NHL cases, including 3,857 diffuse large B-cell lymphoma (DLBCL), 2,847 follicular lymphoma (FL), 3,100 chronic lymphocytic leukemia (CLL), and 825 marginal zone lymphoma (MZL) cases, and 9,505 controls of European ancestry. We evaluated genetically predicted height by constructing polygenic risk scores using 833 height-associated SNPs. We used logistic regression to estimate odds ratios (OR) and 95% confidence intervals (CI) for association between genetically determined height and the risk of four NHL subtypes in each GWAS and then used fixed-effect meta-analysis to combine subtype results across studies. We found suggestive evidence between taller genetically determined height and increased CLL risk (OR = 1.08, 95% CI = 1.00-1.17, p = 0.049), which was slightly stronger among women (OR = 1.15, 95% CI: 1.01-1.31, p = 0.036). No significant associations were observed with DLBCL, FL, or MZL. Our findings suggest that there may be some shared genetic factors between CLL and height, but other endogenous or environmental factors may underlie reported epidemiologic height associations with other subtypes.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy