SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Thomas Gilles) ;pers:(Riboli Elio)"

Sökning: WFRF:(Thomas Gilles) > Riboli Elio

  • Resultat 1-10 av 16
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Cerhan, James R., et al. (författare)
  • Genome-wide association study identifies multiple susceptibility loci for diffuse large B cell lymphoma
  • 2014
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 46:11, s. 1233-1238
  • Tidskriftsartikel (refereegranskat)abstract
    • Diffuse large B cell lymphoma (DLBCL) is the most common lymphoma subtype and is clinically aggressive. To identify genetic susceptibility loci for DLBCL, we conducted a meta-analysis of 3 new genome-wide association studies (GWAS) and 1 previous scan, totaling 3,857 cases and 7,666 controls of European ancestry, with additional genotyping of 9 promising SNPs in 1,359 cases and 4,557 controls. In our multi-stage analysis, five independent SNPs in four loci achieved genome-wide significance marked by rs116446171 at 6p25.3 (EXOC2; P = 2.33 x 10(-21)), rs2523607 at 6p21.33 (HLA-B; P = 2.40 x 10(-10)), rs79480871 at 2p23.3 (NCOA1; P = 4.23 x 10(-8)) and two independent SNPs, rs13255292 and rs4733601, at 8q24.21 (PVT1; P = 9.98 x 10(-13) and 3.63 x 10(-11), respectively). These data provide substantial new evidence for genetic susceptibility to this B cell malignancy and point to pathways involved in immune recognition and immune function in the pathogenesis of DLBCL.
  •  
2.
  • Machiela, Mitchell J., et al. (författare)
  • Genetically predicted longer telomere length is associated with increased risk of B-cell lymphoma subtypes
  • 2016
  • Ingår i: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 25:8, s. 1663-1676
  • Tidskriftsartikel (refereegranskat)abstract
    • Evidence from a small number of studies suggests that longer telomere length measured in peripheral leukocytes is associated with an increased risk of non-Hodgkin lymphoma (NHL). However, these studies may be biased by reverse causation, confounded by unmeasured environmental exposures and might miss time points for which prospective telomere measurement would best reveal a relationship between telomere length and NHL risk. We performed an analysis of genetically inferred telomere length and NHL risk in a study of 10 102 NHL cases of the four most common B-cell histologic types and 9562 controls using a genetic risk score (GRS) comprising nine telomere length-associated single-nucleotide polymorphisms. This approach uses existing genotype data and estimates telomere length by weighing the number of telomere length-associated variant alleles an individual carries with the published change in kb of telomere length. The analysis of the telomere length GRS resulted in an association between longer telomere length and increased NHL risk [four B-cell histologic types combined; odds ratio (OR) = 1.49, 95% CI 1.22-1.82, P-value = 8.5 x 10(-5)]. Subtype-specific analyses indicated that chronic lymphocytic leukemia or small lymphocytic lymphoma (CLL/SLL) was the principal NHL subtype contributing to this association (OR = 2.60, 95% CI 1.93-3.51, P-value = 4.0 x 10(-10)). Significant interactions were observed across strata of sex for CLL/SLL and marginal zone lymphoma subtypes as well as age for the follicular lymphoma subtype. Our results indicate that a genetic background that favors longer telomere length may increase NHL risk, particularly risk of CLL/SLL, and are consistent with earlier studies relating longer telomere length with increased NHL risk.
  •  
3.
  • Amundadottir, Laufey, et al. (författare)
  • Genome-wide association study identifies variants in the ABO locus associated with susceptibility to pancreatic cancer.
  • 2009
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 41, s. 986-990
  • Tidskriftsartikel (refereegranskat)abstract
    • We conducted a two-stage genome-wide association study of pancreatic cancer, a cancer with one of the lowest survival rates worldwide. We genotyped 558,542 SNPs in 1,896 individuals with pancreatic cancer and 1,939 controls drawn from 12 prospective cohorts plus one hospital-based case-control study. We conducted a combined analysis of these groups plus an additional 2,457 affected individuals and 2,654 controls from eight case-control studies, adjusting for study, sex, ancestry and five principal components. We identified an association between a locus on 9q34 and pancreatic cancer marked by the SNP rs505922 (combined P = 5.37 x 10(-8); multiplicative per-allele odds ratio 1.20; 95% confidence interval 1.12-1.28). This SNP maps to the first intron of the ABO blood group gene. Our results are consistent with earlier epidemiologic evidence suggesting that people with blood group O may have a lower risk of pancreatic cancer than those with groups A or B.
  •  
4.
  • Berndt, Sonja, I, et al. (författare)
  • Distinct germline genetic susceptibility profiles identified for common non-Hodgkin lymphoma subtypes
  • 2022
  • Ingår i: Leukemia. - : Springer Nature. - 0887-6924 .- 1476-5551. ; 36:12, s. 2835-2844
  • Tidskriftsartikel (refereegranskat)abstract
    • Lymphoma risk is elevated for relatives with common non-Hodgkin lymphoma (NHL) subtypes, suggesting shared genetic susceptibility across subtypes. To evaluate the extent of mutual heritability among NHL subtypes and discover novel loci shared among subtypes, we analyzed data from eight genome-wide association studies within the InterLymph Consortium, including 10,629 cases and 9505 controls. We utilized Association analysis based on SubSETs (ASSET) to discover loci for subsets of NHL subtypes and evaluated shared heritability across the genome using Genome-wide Complex Trait Analysis (GCTA) and polygenic risk scores. We discovered 17 genome-wide significant loci (P < 5 × 10−8) for subsets of NHL subtypes, including a novel locus at 10q23.33 (HHEX) (P = 3.27 × 10−9). Most subset associations were driven primarily by only one subtype. Genome-wide genetic correlations between pairs of subtypes varied broadly from 0.20 to 0.86, suggesting substantial heterogeneity in the extent of shared heritability among subtypes. Polygenic risk score analyses of established loci for different lymphoid malignancies identified strong associations with some NHL subtypes (P < 5 × 10−8), but weak or null associations with others. Although our analyses suggest partially shared heritability and biological pathways, they reveal substantial heterogeneity among NHL subtypes with each having its own distinct germline genetic architecture.
  •  
5.
  • Berndt, Sonja I, et al. (författare)
  • Large-scale fine mapping of the HNF1B locus and prostate cancer risk
  • 2011
  • Ingår i: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 20:16, s. 3322-3329
  • Tidskriftsartikel (refereegranskat)abstract
    • Previous genome-wide association studies have identified two independent variants in HNF1B as susceptibility loci for prostate cancer risk. To fine-map common genetic variation in this region, we genotyped 79 single nucleotide polymorphisms (SNPs) in the 17q12 region harboring HNF1B in 10 272 prostate cancer cases and 9123 controls of European ancestry from 10 case-control studies as part of the Cancer Genetic Markers of Susceptibility (CGEMS) initiative. Ten SNPs were significantly related to prostate cancer risk at a genome-wide significance level of P < 5 × 10(-8) with the most significant association with rs4430796 (P = 1.62 × 10(-24)). However, risk within this first locus was not entirely explained by rs4430796. Although modestly correlated (r(2)= 0.64), rs7405696 was also associated with risk (P = 9.35 × 10(-23)) even after adjustment for rs4430769 (P = 0.007). As expected, rs11649743 was related to prostate cancer risk (P = 3.54 × 10(-8)); however, the association within this second locus was stronger for rs4794758 (P = 4.95 × 10(-10)), which explained all of the risk observed with rs11649743 when both SNPs were included in the same model (P = 0.32 for rs11649743; P = 0.002 for rs4794758). Sequential conditional analyses indicated that five SNPs (rs4430796, rs7405696, rs4794758, rs1016990 and rs3094509) together comprise the best model for risk in this region. This study demonstrates a complex relationship between variants in the HNF1B region and prostate cancer risk. Further studies are needed to investigate the biological basis of the association of variants in 17q12 with prostate cancer.
  •  
6.
  • Canzian, Federico, et al. (författare)
  • Comprehensive analysis of common genetic variation in 61 genes related to steroid hormone and insulin-like growth factor-I metabolism and breast cancer risk in the NCI breast and prostate cancer cohort consortium.
  • 2010
  • Ingår i: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 19:19, s. 3873-84
  • Tidskriftsartikel (refereegranskat)abstract
    • There is extensive evidence that increases in blood and tissue concentrations of steroid hormones and of insulin-like growth factor I (IGF-I) are associated with breast cancer risk. However, studies of common variation in genes involved in steroid hormone and IGF-I metabolism have yet to provide convincing evidence that such variants predict breast cancer risk. The Breast and Prostate Cancer Cohort Consortium (BPC3) is a collaboration of large US and European cohorts. We genotyped 1416 tagging single nucleotide polymorphisms (SNPs) in 37 steroid hormone metabolism genes and 24 IGF-I pathway genes in 6292 cases of breast cancer and 8135 controls, mostly Caucasian, postmenopausal women from the BPC3. We also imputed 3921 additional SNPs in the regions of interest. None of the SNPs tested was significantly associated with breast cancer risk, after correction for multiple comparisons. The results remained null when cases and controls were stratified by age at diagnosis/recruitment, advanced or nonadvanced disease, body mass index, with or without in situ cases; or restricted to Caucasians. Among 770 estrogen receptor-negative cases, an SNP located 3' of growth hormone receptor (GHR) was marginally associated with increased risk after correction for multiple testing (P(trend) = 1.5 × 10(-4)). We found no significant overall associations between breast cancer and common germline variation in 61 genes involved in steroid hormone and IGF-I metabolism in this large, comprehensive study. Although previous studies have shown that variations in these genes can influence endogenous hormone levels, the magnitude of the effect of single SNPs does not appear to be sufficient to alter breast cancer risk.
  •  
7.
  • Canzian, Federico, et al. (författare)
  • Genetic polymorphisms of the GNRH1 and GNRHR genes and risk of breast cancer in the National Cancer Institute Breast and Prostate Cancer Cohort Consortium (BPC3).
  • 2009
  • Ingår i: BMC cancer. - : Springer Science and Business Media LLC. - 1471-2407. ; 9, s. 257-
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Gonadotropin releasing hormone (GNRH1) triggers the release of follicle stimulating hormone and luteinizing hormone from the pituitary. Genetic variants in the gene encoding GNRH1 or its receptor may influence breast cancer risk by modulating production of ovarian steroid hormones. We studied the association between breast cancer risk and polymorphisms in genes that code for GNRH1 and its receptor (GNRHR) in the large National Cancer Institute Breast and Prostate Cancer Cohort Consortium (NCI-BPC3). METHODS: We sequenced exons of GNRH1 and GNRHR in 95 invasive breast cancer cases. Resulting single nucleotide polymorphisms (SNPs) were genotyped and used to identify haplotype-tagging SNPs (htSNPS) in a panel of 349 healthy women. The htSNPs were genotyped in 5,603 invasive breast cancer cases and 7,480 controls from the Cancer Prevention Study-II (CPS-II), European Prospective Investigation on Cancer and Nutrition (EPIC), Multiethnic Cohort (MEC), Nurses' Health Study (NHS), and Women's Health Study (WHS). Circulating levels of sex steroids (androstenedione, estradiol, estrone and testosterone) were also measured in 4713 study subjects. RESULTS: Breast cancer risk was not associated with any polymorphism or haplotype in the GNRH1 and GNRHR genes, nor were there any statistically significant interactions with known breast cancer risk factors. Polymorphisms in these two genes were not strongly associated with circulating hormone levels. CONCLUSION: Common variants of the GNRH1 and GNRHR genes are not associated with risk of invasive breast cancer in Caucasians.
  •  
8.
  • Dossus, Laure, et al. (författare)
  • PTGS2 and IL6 genetic variation and risk of breast and prostate cancer : results from the Breast and Prostate Cancer Cohort Consortium (BPC3)
  • 2010
  • Ingår i: Carcinogenesis. - : Oxford University Press (OUP). - 0143-3334 .- 1460-2180. ; 31:3, s. 455-461
  • Tidskriftsartikel (refereegranskat)abstract
    • Genes involved in the inflammation pathway have been associated with cancer risk. Genetic variants in the interleukin-6 (IL6) and prostaglandin-endoperoxide synthase-2 (PTGS2, encoding for the COX-2 enzyme) genes, in particular, have been related to several cancer types, including breast and prostate cancers. We conducted a study within the Breast and Prostate Cancer Cohort Consortium to examine the association between IL6 and PTGS2 polymorphisms and breast and prostate cancer risk. Twenty-seven polymorphisms, selected by pairwise tagging, were genotyped on 6292 breast cancer cases and 8135 matched controls and 8008 prostate cancer cases and 8604 matched controls. The large sample sizes and comprehensive single nucleotide polymorphism tagging in this study gave us excellent power to detect modest effects for common variants. After adjustment for multiple testing, none of the associations examined remained statistically significant at P = 0.01. In analyses not adjusted for multiple testing, one IL6 polymorphism (rs6949149) was marginally associated with breast cancer risk (TT versus GG, odds ratios (OR): 1.32; 99% confidence intervals (CI): 1.00-1.74, P(trend) = 0.003) and two were marginally associated with prostate cancer risk (rs6969502-AA versus rs6969502-GG, OR: 0.87, 99% CI: 0.75-1.02; P(trend) = 0.002 and rs7805828-AA versus rs7805828-GG, OR: 1.11, 99% CI: 0.99-1.26; P(trend) = 0.007). An increase in breast cancer risk was observed for the PTGS2 polymorphism rs7550380 (TT versus GG, OR: 1.38, 99% CI: 1.04-1.83). No association was observed between PTGS2 polymorphisms and prostate cancer risk. In conclusion, common genetic variation in these two genes might play at best a limited role in breast and prostate cancers.
  •  
9.
  • Gu, Fangyi, et al. (författare)
  • Eighteen insulin-like growth factor pathway genes, circulating levels of IGF-I and its binding protein, and risk of prostate and breast cancer
  • 2010
  • Ingår i: Cancer Epidemiology, Biomarkers and Prevention. - : American Association for Cancer Research. - 1055-9965 .- 1538-7755. ; 19:11, s. 2877-2887
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Circulating levels of insulin-like growth factor I (IGF-I) and its main binding protein, IGF binding protein 3 (IGFBP-3), have been associated with risk of several types of cancer. Heritable factors explain up to 60% of the variation in IGF-I and IGFBP-3 in studies of adult twins.Methods: We systematically examined common genetic variation in 18 genes in the IGF signaling pathway for associations with circulating levels of IGF-I and IGFBP-3. A total of 302 single nucleotide polymorphisms (SNP) were genotyped in >5,500 Caucasian men and 5,500 Caucasian women from the Breast and Prostate Cancer Cohort Consortium.Results: After adjusting for multiple testing, SNPs in the IGF1 and SSTR5 genes were significantly associated with circulating IGF-I (P < 2.1 × 10−4); SNPs in the IGFBP3 and IGFALS genes were significantly associated with circulating IGFBP-3. Multi-SNP models explained R2 = 0.62% of the variation in circulating IGF-I and 3.9% of the variation in circulating IGFBP-3. We saw no significant association between these multi-SNP predictors of circulating IGF-I or IGFBP-3 and risk of prostate or breast cancers.Conclusion: Common genetic variation in the IGF1 and SSTR5 genes seems to influence circulating IGF-I levels, and variation in IGFBP3 and IGFALS seems to influence circulating IGFBP-3. However, these variants explain only a small percentage of the variation in circulating IGF-I and IGFBP-3 in Caucasian men and women.Impact: Further studies are needed to explore contributions from other genetic factors such as rare variants in these genes and variation outside of these genes.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 16

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy