SwePub
Sök i SwePub databas

  form:Ext_t

Träfflista för sökning "WFRF:(Thone K) "

form:Search_simp_t: WFRF:(Thone K)

  • navigation:Result_t 1-10 navigation:of_t 20
hitlist:Modify_result_t
   
hitlist:Enumeration_thitlist:Reference_thitlist:Reference_picture_thitlist:Find_Mark_t
1.
  •  
2.
  • Ferreira, MA, et al. (creator_code:aut_t)
  • Genome-wide association and transcriptome studies identify target genes and risk loci for breast cancer
  • 2019
  • record:In_t: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 10:1, s. 1741-
  • swepub:Mat_article_t (swepub:level_refereed_t)abstract
    • Genome-wide association studies (GWAS) have identified more than 170 breast cancer susceptibility loci. Here we hypothesize that some risk-associated variants might act in non-breast tissues, specifically adipose tissue and immune cells from blood and spleen. Using expression quantitative trait loci (eQTL) reported in these tissues, we identify 26 previously unreported, likely target genes of overall breast cancer risk variants, and 17 for estrogen receptor (ER)-negative breast cancer, several with a known immune function. We determine the directional effect of gene expression on disease risk measured based on single and multiple eQTL. In addition, using a gene-based test of association that considers eQTL from multiple tissues, we identify seven (and four) regions with variants associated with overall (and ER-negative) breast cancer risk, which were not reported in previous GWAS. Further investigation of the function of the implicated genes in breast and immune cells may provide insights into the etiology of breast cancer.
  •  
3.
  •  
4.
  •  
5.
  • Veres, P., et al. (creator_code:aut_t)
  • Observation of inverse Compton emission from a long gamma-ray burst
  • 2019
  • record:In_t: Nature. - : NATURE PUBLISHING GROUP. - 0028-0836 .- 1476-4687. ; 575:7783, s. 459-
  • swepub:Mat_article_t (swepub:level_refereed_t)abstract
    • Long-duration gamma-ray bursts (GRBs) originate from ultra-relativistic jets launched from the collapsing cores of dying massive stars. They are characterized by an initial phase of bright and highly variable radiation in the kiloelectron volt-to-mega electronvoltband, which is probably produced within the jet and lasts from milliseconds to minutes, known as the prompt emission(1,2). Subsequently, the interaction of the jet with the surrounding medium generates shock waves that are responsible for the afterglow emission, which lasts from days to months and occurs over a broad energy range from the radio to the gigaelectronvolt bands(1-6). The afterglow emission is generally well explained as synchrotron radiation emitted by electrons accelerated by the external shock(7-9). Recently, intense long-lasting emission between 0.2 and 1 teraelectronvolts was observed from GRB 190114C(10,11). Here we report multifrequency observations of GRB 190114C, and study the evolution in time of the GRB emission across 17 orders of magnitude in energy, from 5 x 10(-6) to 10(12) electronvolts. We find that the broadband spectral energy distribution is double-peaked, with the teraelectronvolt emission constituting a distinct spectral component with power comparable to the synchrotron component. This component is associated with the afterglow and is satisfactorily explained by inverse Compton up-scattering of synchrotron photons by high-energy electrons. We find that the conditions required to account for the observed teraelectronvolt component are typical for GRBs, supporting the possibility that inverse Compton emission is commonly produced in GRBs.
  •  
6.
  •  
7.
  •  
8.
  • Izzo, L., et al. (creator_code:aut_t)
  • Signatures of a jet cocoon in early spectra of a supernova associated with a γ-ray burst
  • 2019
  • record:In_t: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 565:7739, s. 324-
  • swepub:Mat_article_t (swepub:level_refereed_t)abstract
    • Long gamma-ray bursts are associated with energetic, broad-lined, stripped-envelope supernovae(1,2) and as such mark the death of massive stars. The scarcity of such events nearby and the brightness of the gamma-ray burst afterglow, which dominates the emission in the first few days after the burst, have so far prevented the study of the very early evolution of supernovae associated with gamma-ray bursts(3). In hydrogen-stripped supernovae that are not associated with gamma-ray bursts, an excess of high-velocity (roughly 30,000 kilometres per second) material has been interpreted as a signature of a choked jet, which did not emerge from the progenitor star and instead deposited all of its energy in a thermal cocoon(4). Here we report multi-epoch spectroscopic observations of the supernova SN 2017iuk, which is associated with the gamma-ray burst GRB 171205A. Our spectra display features at extremely high expansion velocities (around 115,000 kilometres per second) within the first day after the burst(5,6). Using spectral synthesis models developed for SN 2017iuk, we show that these features are characterized by chemical abundances that differ from those observed in the ejecta of SN 2017iuk at later times. We further show that the high-velocity features originate from the mildly relativistic hot cocoon that is generated by an ultra-relativistic jet within the gamma-ray burst expanding and decelerating into the medium that surrounds the progenitor star(7,8). This cocoon rapidly becomes transparent(9) and is outshone by the supernova emission, which starts to dominate the emission three days after the burst.
  •  
9.
  • Shu, Xiang, et al. (creator_code:aut_t)
  • Associations of obesity and circulating insulin and glucose with breast cancer risk : a Mendelian randomization analysis
  • 2019
  • record:In_t: International Journal of Epidemiology. - : OXFORD UNIV PRESS. - 0300-5771 .- 1464-3685. ; 48:3, s. 795-806
  • swepub:Mat_article_t (swepub:level_refereed_t)abstract
    • Background: In addition to the established association between general obesity and breast cancer risk, central obesity and circulating fasting insulin and glucose have been linked to the development of this common malignancy. Findings from previous studies, however, have been inconsistent, and the nature of the associations is unclear. Methods: We conducted Mendelian randomization analyses to evaluate the association of breast cancer risk, using genetic instruments, with fasting insulin, fasting glucose, 2-h glucose, body mass index (BMI) and BMI-adjusted waist-hip-ratio (WHRadj BMI). We first confirmed the association of these instruments with type 2 diabetes risk in a large diabetes genome-wide association study consortium. We then investigated their associations with breast cancer risk using individual-level data obtained from 98 842 cases and 83 464 controls of European descent in the Breast Cancer Association Consortium. Results: All sets of instruments were associated with risk of type 2 diabetes. Associations with breast cancer risk were found for genetically predicted fasting insulin [odds ratio (OR) = 1.71 per standard deviation (SD) increase, 95% confidence interval (CI) = 1.26-2.31, p = 5.09 x 10(-4)], 2-h glucose (OR = 1.80 per SD increase, 95% CI = 1.3 0-2.49, p = 4.02 x 10(-4)), BMI (OR = 0.70 per 5-unit increase, 95% CI = 0.65-0.76, p = 5.05 x 10(-19)) and WHRadj BMI (OR = 0.85, 95% CI = 0.79-0.91, p = 9.22 x 10(-6)). Stratified analyses showed that genetically predicted fasting insulin was more closely related to risk of estrogen-receptor [ER]-positive cancer, whereas the associations with instruments of 2h glucose, BMI and WHRadj BMI were consistent regardless of age, menopausal status, estrogen receptor status and family history of breast cancer. Conclusions: We confirmed the previously reported inverse association of genetically predicted BMI with breast cancer risk, and showed a positive association of genetically predicted fasting insulin and 2-h glucose and an inverse association of WHRadj BMI with breast cancer risk. Our study suggests that genetically determined obesity and glucose/insulin-related traits have an important role in the aetiology of breast cancer.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • navigation:Result_t 1-10 navigation:of_t 20

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt tools:Close_t

tools:Permalink_label_t