SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Thorlacius Henrik) srt2:(2010-2014);pers:(Zhang Songen)"

Sökning: WFRF:(Thorlacius Henrik) > (2010-2014) > Zhang Songen

  • Resultat 1-10 av 16
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Awla, Darbaz, et al. (författare)
  • Rho-kinase signalling regulates trypsinogen activation and tissue damage in severe acute pancreatitis.
  • 2011
  • Ingår i: British Journal of Pharmacology. - : Wiley. - 1476-5381 .- 0007-1188. ; 162, s. 648-658
  • Tidskriftsartikel (refereegranskat)abstract
    • Background and purpose: Severe acute pancreatitis (SAP) is characterized by trypsinogen activation, infiltration of leucocytes and tissue necrosis but the intracellular signalling mechanisms regulating organ injury in the pancreas remain elusive. Rho-kinase is a potent regulator of specific cellular processes effecting several pro-inflammatory activities. Herein, we examined the role of Rho-kinase signalling in acute pancreatitis. Experimental approach: Pancreatitis was induced by infusion of taurocholate into the pancreatic duct in C57BL/6 mice. Animals were treated with a Rho-kinase inhibitor Y-27632 (0.5-5 mg kg(-1) ) before induction of pancreatitis. Key results: Taurocholate infusion caused a clear-cut increase in serum amylase, pancreatic neutrophil infiltration, acinar cell necrosis and oedema formation in the pancreas. Levels of pancreatic myeloperoxidase (MPO), macrophage inflammatory protein-2 (MIP-2), trypsinogen activation peptide (TAP) and lung MPO were significantly increased, indicating local and systemic disease. Inhibition of Rho-kinase activity dose-dependently protected against pancreatitis. For example, 5 mg kg(-1) Y-27632 reduced acinar cell necrosis, leucocyte infiltration and pancreatic oedema by 90%, 89% and 58% respectively as well as tissue levels of MPO by 75% and MIP-2 by 84%. Moreover, Rho-kinase inhibition decreased lung MPO by 75% and serum amylase by 83%. Pancreatitis-induced TAP levels were reduced by 61% in Y-27632-treated mice. Inhibition of Rho-kinase abolished secretagogue-induced activation of trypsinogen in pancreatic acinar cells in vitro. Conclusions and Implications: Our novel data suggest that Rho-kinase signalling plays an important role in acute pancreatitis by regulating trypsinogen activation and subsequent CXC chemokine formation, neutrophil infiltration and tissue injury. Thus, these results indicate that Rho-kinase may constitute a novel target in the management of SAP.
  •  
2.
  • Hasan, Zirak, et al. (författare)
  • Rho-kinase regulates induction of T-cell immune dysfunction in abdominal sepsis.
  • 2013
  • Ingår i: Infection and Immunity. - 1098-5522. ; 81:7, s. 2499-2506
  • Tidskriftsartikel (refereegranskat)abstract
    • T-cell dysfunction increases susceptibility to infections in patients with sepsis. In the present study, we hypothesized that Rho-kinase signaling might regulate induction of T-cell dysfunction in abdominal sepsis. Male C57BL/6 mice were treated with the specific Rho-kinase inhibitor Y-27632 (5 mg/kg) prior to cecal ligation and puncture (CLP). Spleen CD4 T-cell apoptosis, proliferation and regulatory T-cells (CD4(+)CD25(+)Foxp3(+)) were determined by flow cytometry. Formation of IFN-γ and IL-4 in the spleen and plasma levels of HMBG1 and IL-6 were quantified by use of ELISA. It was found that CLP evoked apoptosis and decreased proliferation in splenic CD4 T-cells. Inhibition of Rho-kinase activity decreased apoptosis and enhanced proliferation of CD4 T-cells in septic animals. In addition, CLP-evoked induction of regulatory T-cells in the spleen was abolished by Rho-kinase inhibition. CLP reduced the levels of IFN-γ and IL-4 in the spleen. Pretreatment with Y-27632 inhibited the sepsis-induced decrease in IFN-γ but not IL-4 formation in the spleen. CLP increased plasma levels of HMGB1 by 20-fold and IL-6 by 19-fold. Inhibition of Rho-kinase decreased this CLP-evoked increase of HMGB1, IL-6 and IL-17 levels in the plasma by more than 60%, suggesting that Rho-kinase regulates systemic inflammation in sepsis. Moreover, we observed that pretreatment with Y-27632 abolished CLP-induced bacteremia. Together, our novel findings indicate that Rho-kinase is a powerful regulator of T-cell immune dysfunction in abdominal sepsis. Thus, targeting Rho-kinase signaling might be a useful strategy to improve T-cell immunity in patients with abdominal sepsis.
  •  
3.
  • Merza, Mohammed, et al. (författare)
  • Human thrombin-derived host defense peptides inhibit neutrophil recruitment and tissue injury in severe acute pancreatitis.
  • 2014
  • Ingår i: American Journal of Physiology: Gastrointestinal and Liver Physiology. - : American Physiological Society. - 1522-1547 .- 0193-1857. ; 307:9, s. 914-921
  • Tidskriftsartikel (refereegranskat)abstract
    • Severe acute pancreatitis (AP) is characterized by leukocyte infiltration and tissue injury. Herein, we wanted to examine the potential effects of thrombin-derived host defense peptides (TDPs) in severe AP. Pancreatitis was provoked by infusion of taurocholate into the pancreatic duct or by intraperitoneal administration of L-arginine in C57BL/6 mice. Animals were treated with the TDPs GKY20 and GKY25 or a control peptide WFF25 30 min before induction of AP. TDPs reduced blood amylase levels, neutrophil infiltration, hemorrhage, necrosis and edema formation in the inflamed pancreas. Treatment with TDPs markedly attenuated the taurocholate-induced increase in plasma levels of CXCL2 and interleukin-6. Moreover, administration of TDPs decreased histone 3, histone 4 and MPO levels in the pancreas in response to taurocholate challenge. Interestingly, administration of TDPs abolished neutrophil expression of Mac-1 in mice with pancreatitis. In addition, TDPs inhibited CXCL2-induced chemotaxis of isolated neutrophils in vitro. Fluorescent-labeled TDP was found to directly bind to isolated neutrophils. Finally, a beneficial effect of TDPs was confirmed in L-arginine-induced pancreatitis. Our novel results demonstrate that TDPs exert protective effects against pathological inflammation and tissue damage in AP. These novel findings suggest that TDPs might be useful in the management of patients with severe AP.
  •  
4.
  •  
5.
  • Rahman, Milladur, et al. (författare)
  • Platelet shedding of CD40L is regulated by matrix metalloproteinase-9 in abdominal sepsis.
  • 2013
  • Ingår i: Journal of Thrombosis and Haemostasis. - : Elsevier BV. - 1538-7933 .- 1538-7836. ; 11:7, s. 1385-1398
  • Tidskriftsartikel (refereegranskat)abstract
    • Background and objectives: Platelet-derived CD40L is known to regulate neutrophil recruitment and lung damage in sepsis. However, the mechanism regulating shedding of CD40L from activated platelets is not known. We hypothesized that matrix metalloproteinase-9 might cleave surface expressed CD40L and regulate pulmonary accumulation of neutrophils in sepsis. Methods: Abdominal sepsis was induced by cecal ligation and puncture (CLP) in wild-type and MMP-9-deficient mice. Edema formation, CXC chemokine, myeloperoxidase levels, neutrophils in the lung as well as plasma levels of CD40L and MMP-9 were quantified. Results: CLP increased plasma levels of MMP-9 but not MMP-2. The CLP-induced decrease of platelet surface CD40L and increase of soluble CD40L levels were significantly attenuated in MMP-9 gene-deficient mice. Moreover, pulmonary MPO activity and neutrophil infiltration in the alveolar space as well as edema formation and lung injury were markedly decreased in septic animals lacking MMP-9. In vitro studies revealed that inhibition of MMP-9 decreased platelet shedding of CD40L. Moreover, recombinant MMP-9 was capable of cleaving surface expressed CD40L on activated platelets. In human studies, plasma levels of MMP-9 were significantly increased in patients with septic shock compared to healthy controls although MMP-9 levels did not correlate with organ injury score. Conclusions: Our novel data propose a role of MMP-9 in regulating platelet-dependent infiltration of neutrophils and tissue damage in septic lung injury by controlling CD40L shedding from platelets. We conclude that targeting MMP-9 may be a useful strategy to limit acute lung injury in abdominal sepsis. This article is protected by copyright. All rights reserved.
  •  
6.
  • Zhang, Songen, et al. (författare)
  • Geranylgeranyl transferase regulates streptococcal m1 protein-induced CXC chemokine formation and neutrophil recruitment in the lung.
  • 2013
  • Ingår i: Shock. - 1540-0514. ; 39:3, s. 293-298
  • Tidskriftsartikel (refereegranskat)abstract
    • ABSTRACT: Streptococcal toxic shock syndrome is most frequently associated with Streptococcus pyogenes of the M1 serotype. Simvastatin protects against M1 protein-induced acute lung damage, although downstream mechanisms remain elusive. Herein, we hypothesized that geranylgeranylation might regulate proinflammatory effects in M1 protein-induced lung injury. Male C57BL/6 mice received the geranylgeranyl transferase inhibitor, GGTI-2133, before M1 protein injection. Bronchoalveolar fluid and lung tissue were harvested for quantification of neutrophil recruitment, edema, and CXC chemokine formation. Mac-1 expression on neutrophils was quantified by use of flow cytometry. Quantitative reverse transcriptase-polymerase chain reaction was used to determine gene expression of CXC chemokines in alveolar macrophages. GGTI-2133 reduced M1 protein-provoked infiltration of neutrophils, edema, and tissue injury in the lung. Inhibition of geranylgeranyl transferase had no effect on M1 protein-evoked upregulation of Mac-1 on neutrophils. However, geranylgeranyl transferase inhibition completely inhibited pulmonary formation of CXC chemokines in mice exposed to M1 protein. Notably, GGTI-2133 abolished M1 protein-induced gene expression of CXC chemokines in alveolar macrophages. These novel findings indicate that geranylgeranyl transferase is an important regulator of neutrophil recruitment and CXC chemokine production in the lung. Thus, targeting geranylgeranyl transferase might be a potent way to ameliorate streptococcal M1 protein-triggered acute lung injury.
  •  
7.
  • Zhang, Songen, et al. (författare)
  • p38 Mitogen-activated protein kinase signaling regulates streptococcal M1 protein-induced neutrophil activation and lung injury.
  • 2012
  • Ingår i: Journal of Leukocyte Biology. - : Oxford University Press (OUP). - 1938-3673 .- 0741-5400. ; 91, s. 137-145
  • Tidskriftsartikel (refereegranskat)abstract
    • M1 serotype of Streptococcus pyogenes can cause STSS and acute lung damage. Herein, the purpose was to define the role of p38 MAPK signaling in M1 protein-induced pulmonary injury. Male C57BL/6 mice were treated with specific p38 MAPK inhibitors (SB 239063 and SKF 86002) prior to M1 protein challenge. Edema, neutrophil infiltration, and CXC chemokines were determined in the lung, 4 h after M1 protein administration. Flow cytometry was used to determine Mac-1 expression. Phosphorylation and activity of p38 MAPK were determined by immunoprecipitation and Western blot. IVM was used to analyze leukocyte-endothelium interactions in the pulmonary microcirculation. M1 protein challenge increased phosphorylation and activity of p38 MAPK in the lung, which was inhibited by SB 239063 and SKF 86002. Inhibition of p38 MAPK activity decreased M1 protein-induced infiltration of neutrophils, edema, and CXC chemokine formation in the lung, as well as Mac-1 up-regulation on neutrophils. IVM showed that p38 MAPK inhibition reduced leukocyte rolling and adhesion in the pulmonary microvasculature of M1 protein-treated mice. Our results indicate that p38 MAPK signaling regulates neutrophil infiltration in acute lung injury induced by streptococcal M1 protein. Moreover, p38 MAPK activity controls CXC chemokine formation in the lung, as well as neutrophil expression of Mac-1 and recruitment in the pulmonary microvasculature. In conclusion, these findings suggest that targeting the p38 MAPK signaling pathway may open new opportunities to protect against lung injury in streptococcal infections.
  •  
8.
  • Zhang, Songen, et al. (författare)
  • Ras regulates alveolar macrophage formation of CXC chemokines and neutrophil activation in streptococcal M1 protein-induced lung injury.
  • 2014
  • Ingår i: European Journal of Pharmacology. - : Elsevier BV. - 1879-0712 .- 0014-2999. ; 733:Apr 1, s. 45-53
  • Tidskriftsartikel (refereegranskat)abstract
    • Streptococcal toxic shock syndrome (STSS) is associated with a high mortality rate. The M1 serotype of Streptococcus pyogenes is most frequently associated with STSS. Herein, we examined the role of Ras signaling in M1 protein-induced lung injury. Male C57BL/6 mice received the Ras inhibitor (farnesylthiosalicylic acid, FTS) prior to M1 protein challenge. Bronchoalveolar fluid and lung tissue were harvested for quantification of neutrophil recruitment, edema and CXC chemokine formation. Neutrophil expression of Mac-1 was quantified by use of flow cytometry. Quantitative RT-PCR was used to determine gene expression of CXC chemokines in alveolar macrophages. Administration of FTS reduced M1 protein-induced neutrophil recruitment, edema formation and tissue damage in the lung. M1 protein challenge increased Mac-1 expression on neutrophils and CXC chemokine levels in the lung. Inhibition of Ras activity decreased M1 protein-induced expression of Mac-1 on neutrophils and secretion of CXC chemokines in the lung. Moreover, FTS abolished M1 protein-provoked gene expression of CXC chemokines in alveolar macrophages. Ras inhibition decreased chemokine-mediated neutrophil migration in vitro. Taken together, our novel findings indicate that Ras signaling is a potent regulator of CXC chemokine formation and neutrophil infiltration in the lung. Thus, inhibition of Ras activity might be a useful way to antagonize streptococcal M1 protein-triggered acute lung injury.
  •  
9.
  • Zhang, Su, et al. (författare)
  • Simvastatin antagonizes CD40L secretion, CXC chemokine formation, and pulmonary infiltration of neutrophils in abdominal sepsis.
  • 2011
  • Ingår i: Journal of Leukocyte Biology. - : Oxford University Press (OUP). - 1938-3673 .- 0741-5400. ; 89, s. 735-742
  • Tidskriftsartikel (refereegranskat)abstract
    • Statins have been reported to exert anti-inflammatory actions and protect against septic organ dysfunction. Herein, we hypothesized that simvastatin may attenuate neutrophil activation and lung damage in abdominal sepsis. Male C57BL/6 mice were pretreated with simvastatin (0.5 or 10 mg/kg) before CLP. In separate groups, mice received an anti-CD40L antibody or a CXCR2 antagonist (SB225002) prior to CLP. BALF and lung tissue were harvested for analysis of neutrophil infiltration, as well as edema and CXC chemokine formation. Blood was collected for analysis of Mac-1 and CD40L expression on neutrophils and platelets, as well as soluble CD40L in plasma. Simvastatin decreased CLP-induced neutrophil infiltration and edema formation in the lung. Moreover, Mac-1 expression increased on septic neutrophils, which was significantly attenuated by simvastatin. Inhibition of CD40L reduced CLP-induced up-regulation of Mac-1 on neutrophils. Simvastatin prevented CD40L shedding from the surface of platelets and reduced circulating levels of CD40L in septic mice. CXC chemokine-induced migration of neutrophils in vitro was decreased greatly by simvastatin. Moreover, simvastatin abolished CLP-evoked formation of CXC chemokines in the lung, and a CXCR2 antagonist attenuated pulmonary accumulation of neutrophils. Our data suggest that the inhibitory effect of simvastatin on pulmonary accumulation of neutrophils may be related to a reduction of CD40L secretion into the circulation, as well as a decrease in CXC chemokine formation in the lung. Thus, these protective mechanisms help to explain the beneficial actions exerted by statins, such as simvastatin, in sepsis.
  •  
10.
  • Zhang, Songen, et al. (författare)
  • Simvastatin regulates CXC chemokine formation in streptococcal M1 protein-induced neutrophil infiltration in the lung
  • 2011
  • Ingår i: American Journal of Physiology: Lung Cellular and Molecular Physiology. - : American Physiological Society. - 1522-1504 .- 1040-0605. ; 300:6, s. 930-939
  • Tidskriftsartikel (refereegranskat)abstract
    • Zhang S, Rahman M, Zhang S, Qi Z, Herwald H, Thorlacius H. Simvastatin regulates CXC chemokine formation in streptococcal M1 protein-induced neutrophil infiltration in the lung. Am J Physiol Lung Cell Mol Physiol 300: L930-L939, 2011. First published March 25, 2011; doi:10.1152/ajplung.00422.2010.-Streptococcus pyogenes of the M1 serotype can cause streptococcal toxic shock syndrome and acute lung injury. Statins exert beneficial effects in septic patients although the mechanisms remain elusive. This study examined effects of simvastatin on M1 protein-provoked pulmonary inflammation and tissue injury. Male C57BL/6 mice were pretreated with simvastatin or a CXCR2 antagonist before M1 protein challenge. Bronchoalveolar fluid and lung tissue were harvested for determination of neutrophil infiltration, formation of edema, and CXC chemokines. Flow cytometry was used to determine Mac-1 expression on neutrophils. Gene expression of CXC chemokines was determined in alveolar macrophages by using quantitative RT-PCR. M1 protein challenge caused massive infiltration of neutrophils, edema formation, and production of CXC chemokines in the lung as well as upregulation of Mac-1 on circulating neutrophils. Simvastatin reduced M1 protein-induced infiltration of neutrophils and edema in the lung. In addition, M1 protein-induced Mac-1 expression on neutrophils was abolished by simvastatin. Furthermore, simvastatin markedly decreased pulmonary formation of CXC chemokines and gene expression of CXC chemokines in alveolar macrophages. Moreover, the CXCR2 antagonist reduced M1 protein-induced neutrophil expression of Mac-1 and accumulation of neutrophils as well as edema formation in the lung. These novel findings indicate that simvastatin is a powerful inhibitor of neutrophil infiltration in acute lung damage triggered by streptococcal M1 protein. The inhibitory effect of simvastatin on M1 protein-induced neutrophil recruitment appears related to reduced pulmonary generation of CXC chemokines. Thus, simvastatin may be a useful tool to ameliorate acute lung injury in streptococcal infections.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 16

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy