SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Tian Chao) ;hsvcat:2"

Sökning: WFRF:(Tian Chao) > Teknik

  • Resultat 1-10 av 16
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Cheng, Huailei, et al. (författare)
  • Truck platooning reshapes greenhouse gas emissions of the integrated vehicle-road infrastructure system
  • 2023
  • Ingår i: Nature Communications. - 2041-1723 .- 2041-1723. ; 14:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Reducing greenhouse gas emissions has turned into a pillar of climate change mitigation. Truck platooning is proposed as a strategy to lower emissions from vehicles on roads. However, the potential interactive impacts of this technology on road infrastructure emissions remain unclear. Here, we evaluate the decarbonization effects of truck platooning on the integrated vehicle-road system at a large-scale road network level, spanning 1457 road sections across North America. We show that truck platooning decreases emissions induced by truck operations, but it degrades faster the durability of road infrastructure and leads to a 27.9% rise in road emissions due to more frequent maintenance work. Overall, truck platooning results in a 5.1% emission reduction of the integrated vehicle-road system. In contrast to the benefits of emission reduction, truck platooning leads to additional financial burdens on car users and transportation agencies, calling for the consideration of tradeoffs between emissions and costs and between agencies and users. Our research provides insights into the potential applications of truck platooning to mitigate climate change.
  •  
2.
  • Fei, Chao, et al. (författare)
  • Underwater wireless optical communication utilizing low-complexity sparse pruned-term-based nonlinear decision-feedback equalization
  • 2022
  • Ingår i: Applied Optics. - : Optica Publishing Group. - 1559-128X .- 2155-3165. ; 61:22, s. 6534-6543
  • Tidskriftsartikel (refereegranskat)abstract
    • The nonlinearity of the light-emitting diode (LED) in underwater wireless optical communication (UWOC) systems is considered the one major limiting factor that degrades the system's performance. Volterra series-based nonlinear equalization is widely employed to mitigate such nonlinearity in communication systems. However, the conventional Volterra series-based model is of high complexity, especially for the nonlinearity of higher-order terms or longer memory lengths. In this paper, by pruning away some negligible beating terms and adaptively picking out some of the dominant terms while discarding the trivial ones, we propose and experimentally demonstrate a sparse pruned-term-based nonlinear decision-feedback equalization (SPT-NDFE) scheme for the LED-based UWOC system with an inappreciable performance degradation as compared to systems without the pruning strategy. Meanwhile, by replacing the self/cross beating terms with the terms formed by the absolute operation of a sum of two input samples instead of the product operation terms, a sparse pruned-term-based absolute operation nonlinear decision-feedback equalization (SPT-ANDFE) scheme is also introduced to further reduce complexity. The experimental results show that the SPT-NDFE scheme exhibits comparable performance as compared to the conventional NDFE (nonlinear decision-feedback equalization) scheme with lower complexity (the nonlinear coefficients are reduced by 63.63% as compared to the conventional NDFE scheme). While the SPT-ANDFE scheme yields suboptimal performance with further reduced complexity at the expense of a slight performance degradation, the robustness of the proposed schemes in different turbidity waters is experimentally verified. The proposed channel equalization schemes with low complexity and high performance are promising for power/energy-sensitive UWOC systems.
  •  
3.
  • Wang, Yuan, et al. (författare)
  • Three Gossiping Protocols in Three-Dimensional Underwater Optical Cellular Network
  • 2023
  • Ingår i: 2023 Asia Communications and Photonics Conference/2023 International Photonics and Optoelectronics Meetings, ACP/POEM 2023. - : Institute of Electrical and Electronics Engineers (IEEE).
  • Konferensbidrag (refereegranskat)abstract
    • In this paper, three different low-complexity sector-based Gossiping routing protocols, namely Gossiping with probabilistic selection (Gossiping-PS), Gossiping with visibility priority (Gossiping-VP), and Gossiping with energy priority (Gossiping-EP), are evaluated through the three-dimensional underwater optical cellular network (UOCN). Comprehensive performance comparisons are made among the above three routing protocols in terms of the average hop, end-to-end delay, network lifetime, packet-loss rate, and energy utilization. Numerical analysis shows that Gossiping-PS significantly outperforms the other two schemes, while Gossiping-Vpand Gossiping-EP behave even worse than the standard Gossiping routing protocol under some circumstances, which is owing to the fact that the Greedy algorithm makes the best choice for the current moment instead of taking the global optimality into consideration.
  •  
4.
  • Zhang, Tianyi, et al. (författare)
  • 19.02Gbps/25m Underwater Wireless Optical Communication Adopting Probabilistic Constellation Shaping QAM-DMT Transmission
  • 2023
  • Ingår i: 2023 Asia Communications and Photonics Conference/2023 International Photonics and Optoelectronics Meetings, ACP/POEM 2023. - : Institute of Electrical and Electronics Engineers (IEEE).
  • Konferensbidrag (refereegranskat)abstract
    • We experimentally demonstrated probabilistic constellation shaping quadrature amplitude modulation discrete multitone (PCS QAM-DMT) for 25-m underwater wireless optical communication (UWOC) system with a net data rate of 19.02Gbps. 28.1% capacity improvement is achieved in comparison with conventional bit-power loading DMT scheme. To the best of our knowledge, this is the highest net data rate ever reported for a single LD in current UWOC.
  •  
5.
  • Hu, Lei, et al. (författare)
  • Molecular surface modification of silver chalcogenolate clusters
  • 2022
  • Ingår i: Dalton Trans.. - : Royal Society of Chemistry (RSC). ; 51, s. 3241-3247
  • Tidskriftsartikel (refereegranskat)abstract
    • This study presents a molecular surface modification approach to synthesizing a family of silver chalcogenolate clusters (SCCs) containing the same [Ag12S6] core and different surface-bonded organic ligands (DMAc or pyridines; DMAc = dimethylacetamide), with the aim of tuning the luminescence property and increasing the structural stability of the SCCs. The SCCs displayed strong and tuneable luminescence emissions at 77 K (from green to orange to red) as influenced by the peripheral pyridine ligands. In addition, SCC 5 protected by pyridine molecules was stable in ambient air, humid air and even liquid water for a long time (up to 1 week), and it was more structurally stable than SCC 1 bonded with DMAc molecules under the same conditions. The high structural stability of SCC 5 can be explained by the ability of pyridine molecules to form strong coordination bonds with silver atoms. This study offers a new way of designing structurally stable metal nanoclusters with tuneable physicochemical properties.
  •  
6.
  • Wang, Ze-Kun, et al. (författare)
  • Assembly of Discrete Chalcogenolate Clusters into a One-Dimensional Coordination Polymer with Enhanced Photocatalytic Activity and Stability
  • 2020
  • Ingår i: Inorganic Chemistry. - : American Chemical Society (ACS). - 0020-1669 .- 1520-510X. ; 59:4, s. 2121-2126
  • Tidskriftsartikel (refereegranskat)abstract
    • Interlinking discrete supertetrahedral chalcogenolate clusters with conjugated bipyridine linkers form a one-dimensional coordination polymer, [Cd6Ag4(SPh)16(DMF)(H2O)(bpe)]n (1a), displaying a broader visible-light absorption and a narrower band gap than those of the discrete cluster. More importantly, the coordination polymer demonstrates enhanced activity and stability for the photocatalytic degradation of organic dye in water.
  •  
7.
  • Xu, Chao, et al. (författare)
  • Interlinking supertetrahedral chalcogenolate clusters with bipyridines to form two-dimensional coordination polymers for photocatalytic degradation of organic dye
  • 2019
  • Ingår i: Dalton Transactions. - 1477-9226 .- 1477-9234. ; 48:17, s. 5505-5510
  • Tidskriftsartikel (refereegranskat)abstract
    • Chalcogenolate clusters Cd6Ag4(EPh)16(DMF)3(CH3OH) (E = S, Se) with supertetrahedral structures are isolated. Further interlinking the clusters with organic linker 4,4′-trimethylenedipiperidine in the stepwise assembly approach forms two-dimensional coordination polymers. The clusters and the coordination polymers show tunable band gaps and efficient photocatalytic activities for the degradation of aqueous dye solution. This study demonstrates the great potential of using chalcogenolate clusters and their coordination polymers in photocatalysis applications.
  •  
8.
  • Fei, Chao, et al. (författare)
  • 100-m/3-Gbps underwater wireless optical transmission using a wideband photomultiplier tube (PMT)
  • 2022
  • Ingår i: Optics Express. - : The Optical Society. - 1094-4087. ; 30:2, s. 2326-2337
  • Tidskriftsartikel (refereegranskat)abstract
    • In this paper, a wideband photomultiplier tube (PMT)-based underwater wireless optical communication (UWOC) system is proposed and a comprehensive experimental study of the proposed PMT-based UWOC system is conducted, in which the transmission distance, data rate, and attenuation length (AL) is pushed to 100.6 meters, 3 Gbps, and 6.62, respectively. The receiver sensitivity at 100.6-meter underwater transmission is as low as -40 dBm for the 1.5-Gbps on-off keying (00K) modulation signal. To the best of our knowledge, this is the first Gbps-class UWOC experimental demonstration in >100-meter transmission that has ever been reported. To further minimize the complexity of channel equalization, a sparsity-aware equalizer with orthogonal matching pursuit is adopted to reduce the number of the filter coefficients by more than 50% while keeping slight performance penalty. Furthermore, the performance of the proposed PMT-based LIWOC system in different turbidity waters is investigated, which shows the robustness of the proposed scheme. Thanks to the great sensitivity (approaching the quantum limit) and a relatively larger effective area, benefits of misalignment tolerance contributed by the PMT is verified through a proof-of-concept LIWOC experiment.
  •  
9.
  • Hong, Xiaojian, et al. (författare)
  • Experimental Demonstration of 55-m/2-Gbps Underwater Wireless Optical Communication Using SiPM Diversity Reception and Nonlinear Decision-Feedback Equalizer
  • 2022
  • Ingår i: IEEE Access. - : Institute of Electrical and Electronics Engineers (IEEE). - 2169-3536. ; 10, s. 47814-47823
  • Tidskriftsartikel (refereegranskat)abstract
    • Underwater wireless optical communication (UWOC) is considered as an enabling technology with a mass of potential applications. The silicon photomultiplier (SiPM) exhibits a bright prospect for UWOC thanks to the traits of low-light detection capability, low-voltage operation, and superior operability. However, the performance of the SiPM-based UWOC system is severely degraded by the dead-time caused nonlinear response. In this paper, to mitigate the dead-time induced nonlinear distortion and explore the achievable capacity of the newly developed SiPM, we propose and experimentally demonstrate a 55-m / 2-Gbps UWOC system by virtue of SiPM diversity reception and nonlinear decision-feedback equalizer (NDFE). The performance of NDFE is superior to that of the conventional decision-feedback equalizer (DEE), and NDFE with a pruning factor of 5 declares similar performance as that without pruning strategy, while the number of the nonlinear equalizer can be reduced by similar to 31.8%. Significant performance improvement is also obtained by the proposed scheme under different turbidity waters. The measured data rate is pushed from 1 Gbps to 2 Gbps with a receiver sensitivity as low as -41.96 dBm, which to the best of our knowledge is the largest data rate ever achieved using the off-the-shelf SiPM among the reported UWOC works. In accordance with the receiver sensitivity and the model of optical propagation in the water channel, the maximum attainable distance/data rate is predicted to be 147 m/ 1 Gbps and 128 m/2 Gbps with the proposed scheme. The research results are promising for long-reach and high-speed UWOC.
  •  
10.
  • Tian, Jiahan, et al. (författare)
  • Wide-field-of-view auto-coupling optical antenna system for high-speed bidirectional optical wireless communications in C band
  • 2023
  • Ingår i: Optics Express. - : Optica Publishing Group. - 1094-4087. ; 31:20, s. 33435-33448
  • Tidskriftsartikel (refereegranskat)abstract
    • Due to a great many superior features of infrared light communication (ILC), like high capacity and strong privacy, ILC is considered a potential candidate for serving the high demands of beyond fifth-generation/sixth-generation (B5G/6 G) communication systems. However, the terminal's limited field-of-view (FOV) induces great difficulty in establishing line-of-sight (LoS) link between the transceiver and the terminal. In this paper, we propose a wide-FOV auto-coupling optical antenna system that utilizes a wide-FOV telecentric lens to collect incident infrared beams and automatically couple them into a specific single-mode-fiber (SMF) channel of fiber array and optical switch. The performance of this optical antenna system is assessed through simulation and manual alignment operation, and validated by automatic alignment results. A coupling loss of less than 10.6 dB within a FOV of 100(degrees )for both downstream and upstream beams in C band is demonstrated by the designed system. Furthermore, we establish a bidirectional optical wireless communications (OWC) system employing this antenna and a fiber-type modulating retro-reflector (MRR) system in the terminal. Both 10-Gbps on-off keying (OOK) downstream and upstream transmissions are successfully realized with the FOV of up to 100(degrees) in C band where the measured bit-error-rate (BER) is lower than 3.8 x 10-3. To the best of our knowledge, this is a brand-new auto-coupling optical antenna system with the largest FOV in ILC automatic alignment works in terminals that have ever been reported.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 16

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy