SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ticozzi Nicola) ;pers:(Hardiman Orla)"

Sökning: WFRF:(Ticozzi Nicola) > Hardiman Orla

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Adey, Brett N., et al. (författare)
  • Large-scale analyses of CAV1 and CAV2 suggest their expression is higher in post-mortem ALS brain tissue and affects survival
  • 2023
  • Ingår i: Frontiers in Cellular Neuroscience. - : Frontiers Media S.A.. - 1662-5102. ; 17
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: Caveolin-1 and Caveolin-2 (CAV1 and CAV2) are proteins associated with intercellular neurotrophic signalling. There is converging evidence that CAV1 and CAV2 (CAV1/2) genes have a role in amyotrophic lateral sclerosis (ALS). Disease-associated variants have been identified within CAV1/2 enhancers, which reduce gene expression and lead to disruption of membrane lipid rafts.Methods: Using large ALS whole-genome sequencing and post-mortem RNA sequencing datasets (5,987 and 365 tissue samples, respectively), and iPSC-derived motor neurons from 55 individuals, we investigated the role of CAV1/2 expression and enhancer variants in the ALS phenotype.Results: We report a differential expression analysis between ALS cases and controls for CAV1 and CAV2 genes across various post-mortem brain tissues and three independent datasets. CAV1 and CAV2 expression was consistently higher in ALS patients compared to controls, with significant results across the primary motor cortex, lateral motor cortex, and cerebellum. We also identify increased survival among carriers of CAV1/2 enhancer mutations compared to non-carriers within Project MinE and slower progression as measured by the ALSFRS. Carriers showed a median increase in survival of 345 days.Discussion: These results add to an increasing body of evidence linking CAV1 and CAV2 genes to ALS. We propose that carriers of CAV1/2 enhancer mutations may be conceptualised as an ALS subtype who present a less severe ALS phenotype with a longer survival duration and slower progression. Upregulation of CAV1/2 genes in ALS cases may indicate a causal pathway or a compensatory mechanism. Given prior research supporting the beneficial role of CAV1/2 expression in ALS patients, we consider a compensatory mechanism to better fit the available evidence, although further investigation into the biological pathways associated with CAV1/2 is needed to support this conclusion.
  •  
2.
  • Fogh, Isabella, et al. (författare)
  • A genome-wide association meta-analysis identifies a novel locus at 17q11.2 associated with sporadic amyotrophic lateral sclerosis
  • 2014
  • Ingår i: Human Molecular Genetics. - Oxford : Oxford University Press. - 0964-6906 .- 1460-2083. ; 23:8, s. 2220-2231
  • Tidskriftsartikel (refereegranskat)abstract
    • Identification of mutations at familial loci for amyotrophic lateral sclerosis (ALS) has provided novel insights into the aetiology of this rapidly progressing fatal neurodegenerative disease. However, genome-wide association studies (GWAS) of the more common (90) sporadic form have been less successful with the exception of the replicated locus at 9p21.2. To identify new loci associated with disease susceptibility, we have established the largest association study in ALS to date and undertaken a GWAS meta-analytical study combining 3959 newly genotyped Italian individuals (1982 cases and 1977 controls) collected by SLAGEN (Italian Consortium for the Genetics of ALS) together with samples from Netherlands, USA, UK, Sweden, Belgium, France, Ireland and Italy collected by ALSGEN (the International Consortium on Amyotrophic Lateral Sclerosis Genetics). We analysed a total of 13 225 individuals, 6100 cases and 7125 controls for almost 7 million single-nucleotide polymorphisms (SNPs). We identified a novel locus with genome-wide significance at 17q11.2 (rs34517613 with P 1.11 10(8); OR 0.82) that was validated when combined with genotype data from a replication cohort (P 8.62 10(9); OR 0.833) of 4656 individuals. Furthermore, we confirmed the previously reported association at 9p21.2 (rs3849943 with P 7.69 10(9); OR 1.16). Finally, we estimated the contribution of common variation to heritability of sporadic ALS as 12 using a linear mixed model accounting for all SNPs. Our results provide an insight into the genetic structure of sporadic ALS, confirming that common variation contributes to risk and that sufficiently powered studies can identify novel susceptibility loci.
  •  
3.
  • Fogh, Isabella, et al. (författare)
  • Association of a Locus in the CAMTA1 Gene With Survival in Patients With Sporadic Amyotrophic Lateral Sclerosis
  • 2016
  • Ingår i: JAMA Neurology. - : American Medical Association (AMA). - 2168-6149 .- 2168-6157. ; 73:7, s. 812-820
  • Tidskriftsartikel (refereegranskat)abstract
    • IMPORTANCE Amyotrophic lateral sclerosis (ALS) is a devastating adult-onset neurodegenerative disorder with a poor prognosis and a median survival of 3 years. However, a significant proportion of patients survive more than 10 years from symptom onset. OBJECTIVE To identify gene variants influencing survival in ALS. DESIGN, SETTING, AND PARTICIPANTS This genome-wide association study (GWAS) analyzed survival in data sets from several European countries and the United States that were collected by the Italian Consortium for the Genetics of ALS and the International Consortium on Amyotrophic Lateral Sclerosis Genetics. The study population included 4256 patients with ALS (3125 [73.4%] deceased) with genotype data extended to 7 174 392 variants by imputation analysis. Samples of DNA were collected from January 1, 1993, to December 31, 2009, and analyzed from March 1, 2014, to February 28, 2015. MAIN OUTCOMES AND MEASURES Cox proportional hazards regression under an additive model with adjustment for age at onset, sex, and the first 4 principal components of ancestry, followed bymeta-analysis, were used to analyze data. Survival distributions for the most associated genetic variants were assessed by Kaplan-Meier analysis. RESULTS Among the 4256 patients included in the analysis (2589 male [60.8%] and 1667 female [39.2%]; mean [SD] age at onset, 59 [12] years), the following 2 novel loci were significantly associated with ALS survival: at 10q23 (rs139550538; P = 1.87 x 10(-9)) and in the CAMTA1 gene at 1p36 (rs2412208, P = 3.53 x 10(-8)). At locus 10q23, the adjusted hazard ratio for patients with the rs139550538 AA or AT genotype was 1.61 (95% CI, 1.38-1.89; P = 1.87 x 10(-9)), corresponding to an 8-month reduction in survival compared with TT carriers. For rs2412208 CAMTA1, the adjusted hazard ratio for patients with the GG or GT genotype was 1.17 (95% CI, 1.11-1.24; P = 3.53 x 10(-8)), corresponding to a 4-month reduction in survival compared with TT carriers. CONCLUSIONS AND RELEVANCE This GWAS robustly identified 2 loci at genome-wide levels of significance that influence survival in patients with ALS. Because ALS is a rare disease and prevention is not feasible, treatment that modifies survival is the most realistic strategy. Therefore, identification of modifier genes that might influence ALS survival could improve the understanding of the biology of the disease and suggest biological targets for pharmaceutical intervention. In addition, genetic risk scores for survival could be used as an adjunct to clinical trials to account for the genetic contribution to survival.
  •  
4.
  • Hop, Paul J., et al. (författare)
  • Genome-wide study of DNA methylation shows alterations in metabolic, inflammatory, and cholesterol pathways in ALS
  • 2022
  • Ingår i: Science Translational Medicine. - : American Association for the Advancement of Science. - 1946-6234 .- 1946-6242. ; 14:633
  • Tidskriftsartikel (refereegranskat)abstract
    • Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with an estimated heritability between 40 and 50%. DNA methylation patterns can serve as proxies of (past) exposures and disease progression, as well as providing a potential mechanism that mediates genetic or environmental risk. Here, we present a blood-based epigenome-wide association study meta-analysis in 9706 samples passing stringent quality control (6763 patients, 2943 controls). We identified a total of 45 differentially methylated positions (DMPs) annotated to 42 genes, which are enriched for pathways and traits related to metabolism, cholesterol biosynthesis, and immunity. We then tested 39 DNA methylation-based proxies of putative ALS risk factors and found that high-density lipoprotein cholesterol, body mass index, white blood cell proportions, and alcohol intake were independently associated with ALS. Integration of these results with our latest genome-wide association study showed that cholesterol biosynthesis was potentially causally related to ALS. Last, DNA methylation at several DMPs and blood cell proportion estimates derived from DNA methylation data were associated with survival rate in patients, suggesting that they might represent indicators of underlying disease processes potentially amenable to therapeutic interventions.
  •  
5.
  • Kenna, Kevin P., et al. (författare)
  • NEK1 variants confer susceptibility to amyotrophic lateral sclerosis
  • 2016
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 48:9, s. 1037-1042
  • Tidskriftsartikel (refereegranskat)abstract
    • To identify genetic factors contributing to amyotrophic lateral sclerosis (ALS), we conducted whole-exome analyses of 1,022 index familial ALS (FALS) cases and 7,315 controls. In a new screening strategy, we performed gene-burden analyses trained with established ALS genes and identified a significant association between loss-of-function (LOF) NEK1 variants and FALS risk. Independently, autozygosity mapping for an isolated community in the Netherlands identified a NEK1 p.Arg261 His variant as a candidate risk factor. Replication analyses of sporadic ALS (SALS) cases and independent control cohorts confirmed significant disease association for both p.Arg261 His (10,589 samples analyzed) and NEK1 LOF variants (3,362 samples analyzed). In total, we observed NEK1 risk variants in nearly 3% of ALS cases. NEK1 has been linked to several cellular functions, including cilia formation, DNA-damage response, microtubule stability, neuronal morphology and axonal polarity. Our results provide new and important insights into ALS etiopathogenesis and genetic etiology.
  •  
6.
  • Moisse, Matthieu, et al. (författare)
  • The Effect of SMN Gene Dosage on ALS Risk and Disease Severity
  • 2021
  • Ingår i: Annals of Neurology. - : John Wiley & Sons. - 0364-5134 .- 1531-8249. ; 89:4, s. 686-697
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: The role of the survival of motor neuron (SMN) gene in amyotrophic lateral sclerosis (ALS) is unclear, with several conflicting reports. A decisive result on this topic is needed, given that treatment options are available now for SMN deficiency.Methods: In this largest multicenter case control study to evaluate the effect of SMN1 and SMN2 copy numbers in ALS, we used whole genome sequencing data from Project MinE data freeze 2. SMN copy numbers of 6,375 patients with ALS and 2,412 controls were called from whole genome sequencing data, and the reliability of the calls was tested with multiplex ligation-dependent probe amplification data.Results: The copy number distribution of SMN1 and SMN2 between cases and controls did not show any statistical differences (binomial multivariate logistic regression SMN1 p = 0.54 and SMN2 p = 0.49). In addition, the copy number of SMN did not associate with patient survival (Royston-Parmar; SMN1 p = 0.78 and SMN2 p = 0.23) or age at onset (Royston-Parmar; SMN1 p = 0.75 and SMN2 p = 0.63).Interpretation: In our well-powered study, there was no association of SMN1 or SMN2 copy numbers with the risk of ALS or ALS disease severity. This suggests that changing SMN protein levels in the physiological range may not modify ALS disease course. This is an important finding in the light of emerging therapies targeted at SMN deficiencies.
  •  
7.
  • Nicolas, Aude, et al. (författare)
  • Genome-wide Analyses Identify KIF5A as a Novel ALS Gene
  • 2018
  • Ingår i: Neuron. - : Cell Press. - 0896-6273 .- 1097-4199. ; 97:6, s. 1268-1283.e6
  • Tidskriftsartikel (refereegranskat)abstract
    • To identify novel genes associated with ALS, we undertook two lines of investigation. We carried out a genome-wide association study comparing 20,806 ALS cases and 59,804 controls. Independently, we performed a rare variant burden analysis comparing 1,138 index familial ALS cases and 19,494 controls. Through both approaches, we identified kinesin family member 5A (KIF5A) as a novel gene associated with ALS. Interestingly, mutations predominantly in the N-terminal motor domain of KIF5A are causative for two neurodegenerative diseases: hereditary spastic paraplegia (SPG10) and Charcot-Marie-Tooth type 2 (CMT2). In contrast, ALS-associated mutations are primarily located at the C-terminal cargo-binding tail domain and patients harboring loss-of-function mutations displayed an extended survival relative to typical ALS cases. Taken together, these results broaden the phenotype spectrum resulting from mutations in KIF5A and strengthen the role of cytoskeletal defects in the pathogenesis of ALS.
  •  
8.
  • Van Daele, Sien Hilde, et al. (författare)
  • Genetic variability in sporadic amyotrophic lateral sclerosis
  • 2023
  • Ingår i: Brain. - : Oxford University Press. - 0006-8950 .- 1460-2156. ; 146:9, s. 3760-3769
  • Tidskriftsartikel (refereegranskat)abstract
    • With the advent of gene therapies for amyotrophic lateral sclerosis (ALS), there is a surge in gene testing for this disease. Although there is ample experience with gene testing for C9orf72, SOD1, FUS and TARDBP in familial ALS, large studies exploring genetic variation in all ALS-associated genes in sporadic ALS (sALS) are still scarce. Gene testing in a diagnostic setting is challenging, given the complex genetic architecture of sALS, for which there are genetic variants with large and small effect sizes. Guidelines for the interpretation of genetic variants in gene panels and for counselling of patients are lacking.We aimed to provide a thorough characterization of genetic variability in ALS genes by applying the American College of Medical Genetics and Genomics (ACMG) criteria on whole genome sequencing data from a large cohort of 6013 sporadic ALS patients and 2411 matched controls from Project MinE.We studied genetic variation in 90 ALS-associated genes and applied customized ACMG-criteria to identify pathogenic and likely pathogenic variants. Variants of unknown significance were collected as well. In addition, we determined the length of repeat expansions in C9orf72, ATXN1, ATXN2 and NIPA1 using the ExpansionHunter tool.We found C9orf72 repeat expansions in 5.21% of sALS patients. In 50 ALS-associated genes, we did not identify any pathogenic or likely pathogenic variants. In 5.89%, a pathogenic or likely pathogenic variant was found, most commonly in SOD1, TARDBP, FUS, NEK1, OPTN or TBK1. Significantly more cases carried at least one pathogenic or likely pathogenic variant compared to controls (odds ratio 1.75; P-value 1.64 × 10-5). Isolated risk factors in ATXN1, ATXN2, NIPA1 and/or UNC13A were detected in 17.33% of cases. In 71.83%, we did not find any genetic clues. A combination of variants was found in 2.88%.This study provides an inventory of pathogenic and likely pathogenic genetic variation in a large cohort of sALS patients. Overall, we identified pathogenic and likely pathogenic variants in 11.13% of ALS patients in 38 known ALS genes. In line with the oligogenic hypothesis, we found significantly more combinations of variants in cases compared to controls. Many variants of unknown significance may contribute to ALS risk, but diagnostic algorithms to reliably identify and weigh them are lacking. This work can serve as a resource for counselling and for the assembly of gene panels for ALS. Further characterization of the genetic architecture of sALS is necessary given the growing interest in gene testing in ALS.
  •  
9.
  • Van Der Spek, Rick A., et al. (författare)
  • Reconsidering the causality of TIA1 mutations in ALS
  • 2018
  • Ingår i: Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration. - : TAYLOR & FRANCIS LTD. - 2167-8421 .- 2167-9223. ; 19:1-2, s. 1-3
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy