SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Tobin Martin D) ;pers:(Ahlers M.)"

Search: WFRF:(Tobin Martin D) > Ahlers M.

  • Result 1-7 of 7
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Aartsen, M. G., et al. (author)
  • Determining neutrino oscillation parameters from atmospheric muon neutrino disappearance with three years of IceCube DeepCore data
  • 2015
  • In: Physical Review D. - 1550-7998 .- 1550-2368. ; 91:7
  • Journal article (peer-reviewed)abstract
    • We present a measurement of neutrino oscillations via atmospheric muon neutrino disappearance with three years of data of the completed IceCube neutrino detector. DeepCore, a region of denser IceCube instrumentation, enables the detection and reconstruction of atmospheric muon neutrinos between 10 and 100 GeV, where a strong disappearance signal is expected. The IceCube detector volume surrounding DeepCore is used as a veto region to suppress the atmospheric muon background. Neutrino events are selected where the detected Cherenkov photons of the secondary particles minimally scatter, and the neutrino energy and arrival direction are reconstructed. Both variables are used to obtain the neutrino oscillation parameters from the data, with the best fit given by Delta m(32)(2) = 2.72(-0.20)(+0.19) x 10(-3) eV(2) and sin(2)theta(23) = 0.53(-0.12)(+0.09) (normal mass ordering assumed). The results are compatible, and comparable in precision, to those of dedicated oscillation experiments.
  •  
2.
  • Aartsen, M. G., et al. (author)
  • Energy reconstruction methods in the IceCube neutrino telescope
  • 2014
  • In: Journal of Instrumentation. - 1748-0221. ; 9, s. P03009-
  • Journal article (peer-reviewed)abstract
    • Accurate measurement of neutrino energies is essential to many of the scientific goals of large-volume neutrino telescopes. The fundamental observable in such detectors is the Cherenkov light produced by the transit through a medium of charged particles created in neutrino interactions. The amount of light emitted is proportional to the deposited energy, which is approximately equal to the neutrino energy for v(e) and v(mu) charged-current interactions and can be used to set a lower bound on neutrino energies and to measure neutrino spectra statistically in other channels. Here we describe methods and performance of reconstructing charged-particle energies and topologies from the observed Cherenkov light yield, including techniques to measure the energies of uncontained muon tracks, achieving average uncertainties in electromagnetic-equivalent deposited energy of similar to 15% above 10 TeV.
  •  
3.
  • Aartsen, M. G., et al. (author)
  • The IceProd framework : Distributed data processing for the IceCube neutrino observatory
  • 2015
  • In: Journal of Parallel and Distributed Computing. - : Elsevier BV. - 0743-7315 .- 1096-0848. ; 75, s. 198-211
  • Journal article (peer-reviewed)abstract
    • IceCube is a one-gigaton instrument located at the geographic South Pole, designed to detect cosmic neutrinos, identify the particle nature of dark matter, and study high-energy neutrinos themselves. Simulation of the IceCube detector and processing of data require a significant amount of computational resources. This paper presents the first detailed description of IceProd, a lightweight distributed management system designed to meet these requirements. It is driven by a central database in order to manage mass production of simulations and analysis of data produced by the IceCube detector. IceProd runs as a separate layer on top of other middleware and can take advantage of a variety of computing resources, including grids and batch systems such as CREAM, HTCondor, and PBS. This is accomplished by a set of dedicated daemons that process job submission in a coordinated fashion through the use of middleware plugins that serve to abstract the details of job submission and job management from the framework. (C) 2014 Elsevier Inc. All rights reserved.
  •  
4.
  • Aartsen, M. G., et al. (author)
  • Probing the origin of cosmic rays with extremely high energy neutrinos using the IceCube Observatory
  • 2013
  • In: Physical Review D. - 1550-7998 .- 1550-2368. ; 88:11
  • Journal article (peer-reviewed)abstract
    • We have searched for extremely high energy neutrinos using data taken with the IceCube detector between May 2010 and May 2012. Two neutrino-induced particle shower events with energies around 1 PeV were observed, as reported previously. In this work, we investigate whether these events could originate from cosmogenic neutrinos produced in the interactions of ultrahigh energy cosmic rays with ambient photons while propagating through intergalactic space. Exploiting IceCube's large exposure for extremely high energy neutrinos and the lack of observed events above 100 PeV, we can rule out the corresponding models at more than 90% confidence level. The model-independent quasidifferential 90% C. L. upper limit, which amounts to E-2 phi(nu e)+(nu mu)+(nu tau) = 1.2 x 10(-7) GeV cm(-2) s(-1) sr(-1) at 1 EeV, provides the most stringent constraint in the energy range from 10 PeV to 10 EeV. Our observation disfavors strong cosmological evolution of the highest energy cosmic-ray sources such as the Fanaroff-Riley type II class of radio galaxies.
  •  
5.
  • Aartsen, M. G., et al. (author)
  • Search for a diffuse flux of astrophysical muon neutrinos with the IceCube 59-string configuration
  • 2014
  • In: Physical Review D. - 1550-7998 .- 1550-2368. ; 89:6, s. 062007-
  • Journal article (peer-reviewed)abstract
    • A search for high-energy neutrinos was performed using data collected by the IceCube Neutrino Observatory from May 2009 to May 2010, when the array was running in its 59-string configuration. The data sample was optimized to contain muon neutrino induced events with a background contamination of atmospheric muons of less than 1%. These data, which are dominated by atmospheric neutrinos, are analyzed with a global likelihood fit to search for possible contributions of prompt atmospheric and astrophysical neutrinos, neither of which have yet been identified. Such signals are expected to follow a harder energy spectrum than conventional atmospheric neutrinos. In addition, the zenith angle distribution differs for astrophysical and atmospheric signals. A global fit of the reconstructed energies and directions of observed events is performed, including possible neutrino flux contributions for an astrophysical signal and atmospheric backgrounds as well as systematic uncertainties of the experiment and theoretical predictions. The best fit yields an astrophysical signal flux for nu(mu) + (nu) over bar (mu) of E-2. Phi(E) = 0.25 x 10(-8) GeV cm(-2) s(-1) sr(-1), and a zero prompt component. Although the sensitivity of this analysis for astrophysical neutrinos surpasses the Waxman and Bahcall upper bound, the experimental limit at 90% confidence level is a factor of 1.5 above at a flux of E-2 . Phi(E) = 1.44 x 10(-8) GeV cm(-2) s(-1) sr(-1).
  •  
6.
  • Aartsen, M. G., et al. (author)
  • Search for neutrino-induced particle showers with IceCube-40
  • 2014
  • In: Physical Review D. - 1550-7998 .- 1550-2368. ; 89:10, s. 102001-
  • Journal article (peer-reviewed)abstract
    • We report on the search for neutrino-induced particle showers, so-called cascades, in the IceCube-40 detector. The data for this search were collected between April 2008 and May 2009 when the first 40 IceCube strings were deployed and operational. Three complementary searches were performed, each optimized for different energy regimes. The analysis with the lowest energy threshold (2 TeV) targeted atmospheric neutrinos. A total of 67 events were found, consistent with the expectation of 41 atmospheric muons and 30 atmospheric neutrino events. The two other analyses targeted a harder, astrophysical neutrino flux. The analysis with an intermediate threshold of 25 TeV leads to the observation of 14 cascadelike events, again consistent with the prediction of 3.0 atmospheric neutrino and 7.7 atmospheric muon events. We hence set an upper limit of E-2 Phi(lim) <= 7.46 x 10(-8) GeV sr(-1) s(-1) cm(-2) (90% C.L.) on the diffuse flux from astrophysical neutrinos of all neutrino flavors, applicable to the energy range 25 TeV to 5 PeV, assuming an E-nu(-2) spectrum and a neutrino flavor ratio of 1: 1: 1 at the Earth. The third analysis utilized a larger and optimized sample of atmospheric muon background simulation, leading to a higher energy threshold of 100 TeV. Three events were found over a background prediction of 0.04 atmospheric muon events and 0.21 events from the flux of conventional and prompt atmospheric neutrinos. Including systematic errors this corresponds to a 2.7 sigma excess with respect to the background-only hypothesis. Our observation of neutrino event candidates above 100 TeV complements IceCube's recently observed evidence for high-energy astrophysical neutrinos.
  •  
7.
  • Aartsen, M. G., et al. (author)
  • Search for non-relativistic magnetic monopoles with IceCube
  • 2014
  • In: European Physical Journal C. - : Springer Science and Business Media LLC. - 1434-6044 .- 1434-6052. ; 74:7, s. 2938-
  • Journal article (peer-reviewed)abstract
    • The IceCube Neutrino Observatory is a large Cherenkov detector instrumenting of Antarctic ice. The detector can be used to search for signatures of particle physics beyond the Standard Model. Here, we describe the search for non-relativistic, magnetic monopoles as remnants of the Grand Unified Theory (GUT) era shortly after the Big Bang. Depending on the underlying gauge group these monopoles may catalyze the decay of nucleons via the Rubakov-Callan effect with a cross section suggested to be in the range of to . In IceCube, the Cherenkov light from nucleon decays along the monopole trajectory would produce a characteristic hit pattern. This paper presents the results of an analysis of first data taken from May 2011 until May 2012 with a dedicated slow-particle trigger for DeepCore, a subdetector of IceCube. A second analysis provides better sensitivity for the brightest non-relativistic monopoles using data taken from May 2009 until May 2010. In both analyses no monopole signal was observed. For catalysis cross sections of the flux of non-relativistic GUT monopoles is constrained up to a level of at a 90 % confidence level, which is three orders of magnitude below the Parker bound. The limits assume a dominant decay of the proton into a positron and a neutral pion. These results improve the current best experimental limits by one to two orders of magnitude, for a wide range of assumed speeds and catalysis cross sections.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-7 of 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view