SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Tothill N. F.) "

Sökning: WFRF:(Tothill N. F.)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abdalla, H., et al. (författare)
  • Sensitivity of the Cherenkov Telescope Array for probing cosmology and fundamental physics with gamma-ray propagation
  • 2021
  • Ingår i: Journal of Cosmology and Astroparticle Physics. - : Institute of Physics Publishing (IOPP). - 1475-7516. ; :2
  • Tidskriftsartikel (refereegranskat)abstract
    • The Cherenkov Telescope Array (CTA), the new-generation ground-based observatory for gamma-ray astronomy, provides unique capabilities to address significant open questions in astrophysics, cosmology, and fundamental physics. We study some of the salient areas of gamma-ray cosmology that can be explored as part of the Key Science Projects of CTA, through simulated observations of active galactic nuclei (AGN) and of their relativistic jets. Observations of AGN with CTA will enable a measurement of gamma-ray absorption on the extragalactic background light with a statistical uncertainty below 15% up to a redshift z = 2 and to constrain or detect gamma-ray halos up to intergalactic-magnetic-field strengths of at least 0.3 pG. Extragalactic observations with CTA also show promising potential to probe physics beyond the Standard Model. The best limits on Lorentz invariance violation from gamma-ray astronomy will be improved by a factor of at least two to three. CTA will also probe the parameter space in which axion-like particles could constitute a significant fraction, if not all, of dark matter. We conclude on the synergies between CTA and other upcoming facilities that will foster the growth of gamma-ray cosmology.
  •  
2.
  • Aharonian, F., et al. (författare)
  • A deep spectromorphological study of the ϒ-ray emission surrounding the young massive stellar cluster Westerlund 1
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EPD Sciences. - 0004-6361 .- 1432-0746. ; 666
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Young massive stellar clusters are extreme environments and potentially provide the means for efficient particle acceleration. Indeed, they are increasingly considered as being responsible for a significant fraction of cosmic rays (CRs) that are accelerated within the Milky Way. Westerlund 1, the most massive known young stellar cluster in our Galaxy, is a prime candidate for studying this hypothesis. While the very-high-energy gamma-ray source HESS J1646-458 has been detected in the vicinity of Westerlund 1 in the past, its association could not be firmly identified. Aims. We aim to identify the physical processes responsible for the gamma-ray emission around Westerlund 1 and thus to understand the role of massive stellar clusters in the acceleration of Galactic CRs better. Methods. Using 164 h of data recorded with the High Energy Stereoscopic System (H.E.S.S.), we carried out a deep spectromorphological study of the gamma-ray emission of HESS J1646-458. We furthermore employed H I and CO observations of the region to infer the presence of gas that could serve as target material for interactions of accelerated CRs. Results. We detected large-scale (similar to 2 degrees diameter) gamma-ray emission with a complex morphology, exhibiting a shell-like structure and showing no significant variation with gamma-ray energy. The combined energy spectrum of the emission extends to several tens of TeV, and it is uniform across the entire source region. We did not find a clear correlation of the gamma-ray emission with gas clouds as identified through H I and CO observations. Conclusions. We conclude that, of the known objects within the region, only Westerlund 1 can explain the majority of the gamma-ray emission. Several CR acceleration sites and mechanisms are conceivable and discussed in detail. While it seems clear that Westerlund 1 acts as a powerful particle accelerator, no firm conclusions on the contribution of massive stellar clusters to the flux of Galactic CRs in general can be drawn at this point.
  •  
3.
  • Highlights from the first year of Odin observations
  • 2003
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 402, s. L39-L46
  • Tidskriftsartikel (refereegranskat)abstract
    • Key Odin operational and instrumental features and highlights from our sub-millimetre and millimetre wave observations of H2O, H218O, NH3, 15NH3 and O2 are presented, with some insights into accompanying Odin Letters in this A&A issue. We focus on new results where Odin's high angular resolution, high frequency resolution, large spectrometer bandwidths, high sensitivity or/and frequency tuning capability are crucial: H2O mapping of the Orion KL, W3, DR21, S140 regions, and four comets; H2O observations of Galactic Centre sources, of shock enhanced H2O towards the SNR IC443, and of the candidate infall source IRAS 16293-2422; H218O detections in Orion KL and in comet Ikeya-Zhang; sub-mm detections of NH3 in Orion KL (outflow, ambient cloud and bar) and ρ Oph, and very recently, of 15NH3 in~Orion KL. Simultaneous sensitive searches for the 119 GHz line of O2 have resulted in very low abundance limits, which are difficult to accomodate in chemical models. We also demonstrate, by means of a quantitative comparison of Orion KL H2O results, that the Odin and SWAS observational data sets are very consistently calibrated. Odin is a Swedish-led satellite project funded jointly by the Swedish National Space Board (SNSB), the Canadian Space Agency (CSA), the National Technology Agency of Finland (Tekes), and the Centre National d'études Spatiales (CNES, France). The Swedish Space Corporation (SSC) has been the prime industrial contractor, and is also responsible for the satellite operation from its Odin Mission Control Centre at SSC in Solna and its Odin Control Centre at ESRANGE near Kiruna in northern Sweden. See also the SNSB Odin web page: http://www.snsb.se/eng_odin_intro.shtml
  •  
4.
  • Larsson, B., et al. (författare)
  • First NH3 detection of the Orion Bar
  • 2003
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 402, s. L69-L72
  • Tidskriftsartikel (refereegranskat)abstract
    • Odin has successfully observed three regions in the Orion A cloud, i.e. Ori KL, Ori S and the Orion Bar, in the 572.5 GHz rotational ground state line of ammonia, ortho-NH3 (J,K) = (1,0) -> (0,0), and the result for the Orion Bar represents the first detection in an ammonia line. Several velocity components are present in the data. Specifically, the observed line profile from the Orion Bar can be decomposed into two components, which are in agreement with observations in high-J CO lines by Wilson et al. (\cite{wilson01}). Using the source model for the Orion Bar by these authors, our Odin observation implies a total ammonia abundance of NH3/H2 = 5x 10-9. Based on observations with Odin, a Swedish-led satellite project funded jointly by the Swedish National Space Board (SNSB), the Canadian Space Agency (CSA), the National Technology Agency of Finland (Tekes) and Centre National d'Études Spatiales (CNES). The Swedish Space Corporation has been the industrial prime contractor.
  •  
5.
  • Olofsson, Henrik, 1972, et al. (författare)
  • Odin water mapping in the Orion KL region
  • 2003
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 402, s. L47-L54
  • Tidskriftsartikel (refereegranskat)abstract
    • New results from water mapping observations of the Orion KL region using the submm/mm wave satellite Odin (2.1\arcmin beam size at 557 GHz), are presented. The ortho-H2O \jkktrans{1}{1}{0}{1}{0}{1} ground state transition was observed in a 7arcminx 7arcmin rectangular grid with a spacing of 1\arcmin, while the same line of H218O was measured in two positions, Orion KL itself and 2\arcmin south of Orion KL. In the main water species, the KL molecular outflow is largely resolved from the ambient cloud and it is found to have an extension of 60\arcsec-110\arcsec. The H2O outflow profile exhibits a rather striking absorption-like asymmetry at the line centre. Self-absorption in the near (or ``blue'') part of the outflow (and possibly in foreground quiescent halo gas) is tentatively suggested to play a role here. We argue that the dominant part of the KL H218O outflow emission emanates from the compact (size ~ 15\arcsec) low-velocity flow and here estimate an H2O abundance of circa 10-5 compared to all H2 in the flow - an order of magnitude below earlier estimates of the H2O abundance in the shocked gas of the high-velocity flow. The narrow ambient cloud lines show weak velocity trends, both in the N-S and E-W directions. H218O is detected for the first time in the southern position at a level of ~ 0.15 K and we here estimate an H2O abundance of (1-8) x 10-8. Odin is a Swedish-led satellite project funded jointly by the Swedish National Space Board (SNSB), the Canadian Space Agency (CSA), the National Technology Agency of Finland (Tekes), and the Centre National d'Études Spatiales (CNES, France). The Swedish Space Corporation (SSC) was the industrial prime contractor and is also responsible for the satellite operation.
  •  
6.
  • Pagani, L., et al. (författare)
  • Low upper limits on the O2 abundance from the Odin satellite
  • 2003
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 402, s. L77-L81
  • Tidskriftsartikel (refereegranskat)abstract
    • For the first time, a search has been conducted in our Galaxy for the 119 GHz transition connecting to the ground state of O2, using the Odin satellite. Equipped with a sensitive 3 mm receiver (Tsys(SSB) = 600 K), Odin has reached unprecedented upper limits on the abundance of O2, especially in cold dark clouds where the excited state levels involved in the 487 GHz transition are not expected to be significantly populated. Here we report upper limits for a dozen sources. In cold dark clouds we improve upon the published SWAS upper limits by more than an order of magnitude, reaching N(O2)/N(H2) <= 10-7 in half of the sources. While standard chemical models are definitively ruled out by these new limits, our results are compatible with several recent studies that derive lower O2 abundances. Goldsmith et al. (\cite{SWAS2002}) recently reported a SWAS tentative detection of the 487 GHz transition of O2 in an outflow wing towards rho Oph A in a combination of 7 beams covering approximately 10arcmin x 14arcmin . In a brief (1.3 hour integration time) and partial covering of the SWAS region (~65% if we exclude their central position), we did not detect the corresponding 119 GHz line. Our 3 sigma upper limit on the O2 column density is 7.3x 1015 cm-2. We presently cannot exclude the possibility that the SWAS signal lies mostly outside of the 9\arcmin Odin beam and has escaped our sensitive detector. Based on observations with Odin, a Swedish-led satellite project funded jointly by the Swedish National Space Board (SNSB), the Canadian Space Agency (CSA), the National Technology Agency of Finland (Tekes) and Centre National d'Études Spatiales (CNES). The Swedish Space Corporation was the industrial prime contractor and is operating Odin.
  •  
7.
  • Sandqvist, Aa., et al. (författare)
  • Odin observations of H2O in the Galactic Centre
  • 2003
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 402, s. L63-L67
  • Tidskriftsartikel (refereegranskat)abstract
    • The Odin satellite has been used to detect emission and absorption in the 557-GHz H216O line in the Galactic Centre towards the Sgr Astar Circumnuclear Disk (CND), and the Sgr A +20 km s-1 and +50 km s-1 molecular clouds. Strong broad H2O emission lines have been detected in all three objects. Narrow H2O absorption lines are present at all three positions and originate along the lines of sight in the 3-kpc Spiral Arm, the -30 km s-1 Spiral Arm and the Local Sgr Spiral Arm. Broad H2O absorption lines near -130 km s-1 are also observed, originating in the Expanding Molecular Ring. A new molecular feature (the ``High Positive Velocity Gas'' - HPVG) has been identified in the positive velocity range of ~+120 to +220 km s-1, seen definitely in absorption against the stronger dust continuum emission from the +20 km s-1 and +50 km s-1 clouds and possibly in emission towards the position of Sgr Astar CND. The 548-GHz H218O isotope line towards the CND is not detected at the 0.02 K (rms) level. Based on observations with Odin, a Swedish-led satellite project funded jointly by the Swedish National Space Board (SNSB), the Canadian Space Agency (CSA), the National Technology Agency of Finland (Tekes) and Centre National d'Études Spatiales (CNES). The Swedish Space Corporation was the industrial prime contractor and is also responsible for the satellite operation.
  •  
8.
  • Wilson, C. D., et al. (författare)
  • Submillimeter emission from water in the W3 region
  • 2003
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 402, s. L59-L62
  • Tidskriftsartikel (refereegranskat)abstract
    • Using the Odin satellite, we have mapped the submillimeter emission from the 110-101 transition of ortho-water in the W3 star-forming region. A 5arcminx 5arcmin map of the W3 IRS4 and W3 IRS5 region reveals strong water lines at half the positions in the map. The relative strength of the Odin lines compared to previous observations by SWAS suggests that we are seeing water emission from an extended region. Across much of the map the lines are double-peaked, with an absorption feature at -39 km s-1; however, some positions in the map show a single strong line at -43 km s-1. We interpret the double-peaked lines as arising from optically thick, self-absorbed water emission near the W3 IRS5, while the narrower blue-shifted lines originate in emission near W3 IRS4. In this model, the unusual appearance of the spectral lines across the map results from a coincidental agreement in velocity between the emission near W3 IRS4 and the blue peak of the more complex lines near W3 IRS5. The strength of the water lines near W3 IRS4 suggests we may be seeing water emission enhanced in a photon-dominated region. Based on observations with Odin, a Swedish-led satellite project funded jointly by the Swedish National Space Board (SNSB), the Canadian Space Agency (CSA), the National Technology Agency of Finland (Tekes), and Centre National d'Études Spatiales (CNES). The Swedish Space Corporation was the industrial prime contractor and is also responsible for the satellite operation.
  •  
9.
  • Liseau, R., et al. (författare)
  • First detection of NH3 (10 -> 00) from a low mass cloud core. On the low ammonia abundance of the rho Oph A core
  • 2003
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 402, s. L73-L76
  • Tidskriftsartikel (refereegranskat)abstract
    • Odin has successfully observed the molecular core rho Oph A in the 572.5 GHz rotational ground state line of ammonia, NH3 (JK = 10 -> 00). The interpretation of this result makes use of complementary molecular line data obtained from the ground (C17O and CH3OH) as part of the Odin preparatory work. Comparison of these observations with theoretical model calculations of line excitation and transfer yields a quite ordinary abundance of methanol, X(CH3OH)= 3 x 10-9. Unless NH3 is not entirely segregated from C17O and CH3OH, ammonia is found to be significantly underabundant with respect to typical dense core values, viz. X(NH3) = 8 x 10-10. Based on observations with Odin, a Swedish-led satellite project funded jointly by the Swedish National Space Board (SNSB), the Canadian Space Agency (CSA), the National Technology Agency of Finland (Tekes) and Centre National d'Études Spatiales (CNES). The Swedish Space Corporation has been the industrial prime contractor. and based on observations collected with the Swedish ESO Submillimeter Telescope, SEST, in La Silla, Chile.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy