SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Trägårdh Elin) ;pers:(Bitzén Ulrika)"

Sökning: WFRF:(Trägårdh Elin) > Bitzén Ulrika

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Economou Lundeberg, Johan, et al. (författare)
  • Comparison between silicon photomultiplier-based and conventional PET/CT in patients with suspected lung cancer—a pilot study
  • 2019
  • Ingår i: EJNMMI Research. - : Springer Science and Business Media LLC. - 2191-219X. ; 9:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Lung cancer is one of the most common cancers in the world. Early detection and correct staging are fundamental for treatment and prognosis. Positron emission tomography with computed tomography (PET/CT) is recommended clinically. Silicon (Si) photomultiplier (PM)-based PET technology and new reconstruction algorithms are hoped to increase the detection of small lesions and enable earlier detection of pathologies including metastatic spread. The aim of this study was to compare the diagnostic performance of a SiPM-based PET/CT (including a new block-sequential regularization expectation maximization (BSREM) reconstruction algorithm) with a conventional PM-based PET/CT including a conventional ordered subset expectation maximization (OSEM) reconstruction algorithm. The focus was patients admitted for 18F-fluorodeoxyglucose (FDG) PET/CT for initial diagnosis and staging of suspected lung cancer. Patients were scanned on both a SiPM-based PET/CT (Discovery MI; GE Healthcare, Milwaukee, MI, USA) and a PM-based PET/CT (Discovery 690; GE Healthcare, Milwaukee, MI, USA). Standardized uptake values (SUV) and image interpretation were compared between the two systems. Image interpretations were further compared with histopathology when available. Results: Seventeen patients referred for suspected lung cancer were included in our single injection, dual imaging study. No statically significant differences in SUVmax of suspected malignant primary tumours were found between the two PET/CT systems. SUVmax in suspected malignant intrathoracic lymph nodes was 10% higher on the SiPM-based system (p = 0.026). Good consistency (14/17 cases) between the PET/CT systems were found when comparing simplified TNM staging. The available histology results did not find any obvious differences between the systems. Conclusion: In a clinical setting, the new SiPM-based PET/CT system with a new BSREM reconstruction algorithm provided a higher SUVmax for suspected lymph node metastases compared to the PM-based system. However, no improvement in lung cancer detection was seen.
  •  
2.
  • Hvittfeldt, Erland, et al. (författare)
  • PET/CT imaging 2 h after injection of [18F]PSMA-1007 can lead to higher staging of prostate cancer than imaging after 1 h
  • 2023
  • Ingår i: European journal of hybrid imaging. - 2510-3636. ; 7:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: [18F]PSMA-1007 is a prostate specific membrane antigen (PSMA) ligand for positron emission tomography (PET) imaging of prostate cancer. Current guidelines recommend imaging 90–120 min after injection but strong data about optimal timing is lacking. Our aim was to study whether imaging after 1 h and 2 h leads to a different number of detected lesions, with a specific focus on lesions that might lead to a change in treatment. Methods: 195 patients underwent PET with computed tomography imaging 1 and 2 h after injection of [18F]PSMA-1007. Three readers assessed the status of the prostate or prostate bed and suspected metastases. We analyzed the location and number of found metastases to determine N- and M-stage of patients. We also analyzed standardized uptake values (SUV) in lesions and in normal tissue. Results: Significantly more pelvic lymph nodes and bone metastases were found and higher N- and M-stages were seen after 2 h. In twelve patients (6.1%) two or three readers agreed on a higher N- or M-stage after 2 h. Conversely, in two patients (1.0%), two readers agreed on a higher stage at 1 h. SUVs in suspected malignant lesions and in normal tissues were higher at 2 h, but lower in the blood pool and urinary bladder. Conclusions: Imaging at 2 h after injection of [18F]PSMA-1007 leads to more suspected metastases found than after 1 h, with higher staging in some patients and possible effect on patient treatment.
  •  
3.
  • Oddstig, Jenny, et al. (författare)
  • Comparison of conventional and Si-photomultiplier-based PET systems for image quality and diagnostic performance
  • 2019
  • Ingår i: BMC Medical Imaging. - : Springer Science and Business Media LLC. - 1471-2342. ; 19:1
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: A new generation of positron emission tomography with computed tomography (PET-CT) was recently introduced using silicon (Si) photomultiplier (PM)-based technology. Our aim was to compare the image quality and diagnostic performance of a SiPM-based PET-CT (Discovery MI; GE Healthcare, Milwaukee, WI, USA) with a time-of-flight PET-CT scanner with a conventional PM detector (Gemini TF; Philips Healthcare, Cleveland, OH, USA), including reconstruction algorithms per vendor's recommendations. METHODS: Imaging of the National Electrical Manufacturers Association IEC body phantom and 16 patients was carried out using 1.5 min/bed for the Discovery MI PET-CT and 2 min/bed for the Gemini TF PET-CT. Images were analysed for recovery coefficients for the phantom, signal-to-noise ratio in the liver, standardized uptake values (SUV) in lesions, number of lesions and metabolic TNM classifications in patients. RESULTS: In phantom, the correct (> 90%) activity level was measured for spheres ≥17 mm for Discovery MI, whereas the Gemini TF reached a correct measured activity level for the 37-mm sphere. In patient studies, metabolic TNM classification was worse using images obtained from the Discovery MI compared those obtained from the Gemini TF in 4 of 15 patients. A trend toward more malignant, inflammatory and unclear lesions was found using images acquired with the Discovery MI compared with the Gemini TF, but this was not statistically significant. Lesion-to-blood-pool SUV ratios were significantly higher in images from the Discovery MI compared with the Gemini TF for lesions smaller than 1 cm (p < 0.001), but this was not the case for larger lesions (p = 0.053). The signal-to-noise ratio in the liver was similar between platforms (p = 0.52). Also, shorter acquisition times were possible using the Discovery MI, with preserved signal-to-noise ratio in the liver. CONCLUSIONS: Image quality was better with Discovery MI compared to conventional Gemini TF. Although no gold standard was available, the results indicate that the new PET-CT generation will provide potentially better diagnostic performance.
  •  
4.
  • Trägårdh, Elin, et al. (författare)
  • Freely Available, Fully Automated AI-Based Analysis of Primary Tumour and Metastases of Prostate Cancer in Whole-Body [F-18]-PSMA-1007 PET-CT
  • 2022
  • Ingår i: Diagnostics. - : MDPI AG. - 2075-4418. ; 12:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Here, we aimed to develop and validate a fully automated artificial intelligence (AI)-based method for the detection and quantification of suspected prostate tumour/local recurrence, lymph node metastases, and bone metastases from [F-18]PSMA-1007 positron emission tomography-computed tomography (PET-CT) images. Images from 660 patients were included. Segmentations by one expert reader were ground truth. A convolutional neural network (CNN) was developed and trained on a training set, and the performance was tested on a separate test set of 120 patients. The AI method was compared with manual segmentations performed by several nuclear medicine physicians. Assessment of tumour burden (total lesion volume (TLV) and total lesion uptake (TLU)) was performed. The sensitivity of the AI method was, on average, 79% for detecting prostate tumour/recurrence, 79% for lymph node metastases, and 62% for bone metastases. On average, nuclear medicine physicians' corresponding sensitivities were 78%, 78%, and 59%, respectively. The correlations of TLV and TLU between AI and nuclear medicine physicians were all statistically significant and ranged from R = 0.53 to R = 0.83. In conclusion, the development of an AI-based method for prostate cancer detection with sensitivity on par with nuclear medicine physicians was possible. The developed AI tool is freely available for researchers.
  •  
5.
  • Trägårdh, Elin, et al. (författare)
  • Impact of acquisition time and penalizing factor in a block-sequential regularized expectation maximization reconstruction algorithm on a Si-photomultiplier-based PET-CT system for 18F-FDG
  • 2019
  • Ingår i: EJNMMI Research. - : Springer Science and Business Media LLC. - 2191-219X. ; 9:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Block-sequential regularized expectation maximization (BSREM), commercially Q. Clear (GE Healthcare, Milwaukee, WI, USA), is a reconstruction algorithm that allows for a fully convergent iterative reconstruction leading to higher image contrast compared to conventional reconstruction algorithms, while also limiting noise. The noise penalization factor β controls the trade-off between noise level and resolution and can be adjusted by the user. The aim was to evaluate the influence of different β values for different activity time products (ATs = administered activity × acquisition time) in whole-body 18F-fluorodeoxyglucose (FDG) positron emission tomography with computed tomography (PET-CT) regarding quantitative data, interpretation, and quality assessment of the images. Twenty-five patients with known or suspected malignancies, referred for clinical 18F-FDG PET-CT examinations acquired on a silicon photomultiplier PET-CT scanner, were included. The data were reconstructed using BSREM with β values of 100–700 and ATs of 4–16 MBq/kg × min/bed (acquisition times of 1, 1.5, 2, 3, and 4 min/bed). Noise level, lesion SUVmax, and lesion SUVpeak were calculated. Image quality and lesion detectability were assessed by four nuclear medicine physicians for acquisition times of 1.0 and 1.5 min/bed position. Results: The noise level decreased with increasing β values and ATs. Lesion SUVmax varied considerably between different β values and ATs, whereas SUVpeak was more stable. For an AT of 6 (in our case 1.5 min/bed), the best image quality was obtained with a β of 600 and the best lesion detectability with a β of 500. AT of 4 generated poor-quality images and false positive uptakes due to noise. Conclusions: For oncologic whole-body 18F-FDG examinations on a SiPM-based PET-CT, we propose using an AT of 6 (i.e., 4 MBq/kg and 1.5 min/bed) reconstructed with BSREM using a β value of 500–600 in order to ensure image quality and lesion detection rate as well as a high patient throughput. We do not recommend using AT < 6 since the risk of false positive uptakes due to noise increases.
  •  
6.
  • Trägårdh, Elin, et al. (författare)
  • Optimization of [18F]PSMA-1007 PET-CT using regularized reconstruction in patients with prostate cancer
  • 2020
  • Ingår i: EJNMMI Physics. - : Springer Science and Business Media LLC. - 2197-7364. ; 7:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Prostate-specific membrane antigen (PSMA) radiotracers such as [18F]PSMA-1007 used with positron emission tomography-computed tomography (PET-CT) is promising for initial staging and detection of recurrent disease in prostate cancer patients. The block-sequential regularization expectation maximization algorithm (BSREM) is a new PET reconstruction algorithm, which provides higher image contrast while also reducing noise. The aim of the present study was to evaluate the influence of different acquisition times and different noise-suppressing factors in BSREM (β values) in [18F]PSMA-1007 PET-CT regarding quantitative data as well as a visual image quality assessment. We included 35 patients referred for clinical [18F]PSMA-1007 PET-CT. Four megabecquerels per kilogramme were administered and imaging was performed after 120 min. Eighty-four image series per patient were created with combinations of acquisition times of 1–4 min/bed position and β values of 300–1400. The noise level in normal tissue and the contrast-to-noise ratio (CNR) of pathological uptakes versus the local background were calculated. Image quality was assessed by experienced nuclear medicine physicians. Results: The noise level in the liver, spleen, and muscle was higher for low β values and low acquisition times (written as activity time products (ATs = administered activity × acquisition time)) and was minimized at maximum AT (16 MBq/kg min) and maximum β (1400). There was only a small decrease above AT 10. The median CNR increased slowly with AT from approximately 6 to 12 and was substantially lower at AT 4 and higher at AT 14–16. At AT 4–6, many images were regarded as being of unacceptable quality. For AT 8, β values of 700–900 were considered of acceptable quality. Conclusions: An AT of 8 (for example as in our study, 4 MB/kg with an acquisition time of 2 min) with a β value of 700 performs well regarding noise level, CNR, and visual image quality assessment.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy