SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Trägårdh Elin) ;pers:(Reza Mariana)"

Sökning: WFRF:(Trägårdh Elin) > Reza Mariana

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Anand, Aseem, et al. (författare)
  • A preanalytic validation study of automated bone scan index : Effect on accuracy and reproducibility due to the procedural variabilities in bone scan image acquisition
  • 2016
  • Ingår i: Journal of Nuclear Medicine. - : Society of Nuclear Medicine. - 0161-5505 .- 2159-662X. ; 57:12, s. 1865-1871
  • Tidskriftsartikel (refereegranskat)abstract
    • The effect of the procedural variability in image acquisition on the quantitative assessment of bone scan is unknown. Here, we have developed and performed preanalytical studies to assess the impact of the variability in scanning speed and in vendor-specific γ-camera on reproducibility and accuracy of the automated bone scan index (BSI). Methods: Two separate preanalytical studies were performed: a patient study and a simulation study. In the patient study, to evaluate the effect on BSI reproducibility, repeated bone scans were prospectively obtained from metastatic prostate cancer patients enrolled in 3 groups (Grp). In Grp1, the repeated scan speed and the γ-camera vendor were the same as that of the original scan. In Grp2, the repeated scan was twice the speed of the original scan. In Grp3, the repeated scan used a different γ-camera vendor than that used in the original scan. In the simulation study, to evaluate the effect on BSI accuracy, bone scans of a virtual phantom with predefined skeletal tumor burden (phantom-BSI) were simulated against the range of image counts (0.2, 0.5, 1.0, and 1.5 million) and separately against the resolution settings of the γ-cameras. The automated BSI was measured with a computer-automated platform. Reproducibility was measured as the absolute difference between the repeated BSI values, and accuracy was measured as the absolute difference between the observed BSI and the phantom-BSI values. Descriptive statistics were used to compare the generated data. Results: In the patient study, 75 patients, 25 in each group, were enrolled. The reproducibility of Grp2 (mean ± SD, 0.35 ± 0.59) was observed to be significantly lower than that of Grp1 (mean ± SD, 0.10 ± 0.13; P < 0.0001) and that of Grp3 (mean ± SD, 0.09 ± 0.10; P < 0.0001). However, no significant difference was observed between the reproducibility of Grp3 and Grp1 (P = 0.388). In the simulation study, the accuracy at 0.5 million counts (mean ± SD, 0.57 ± 0.38) and at 0.2 million counts (mean ± SD, 4.67 ± 0.85) was significantly lower than that observed at 1.5 million counts (mean ± SD, 0.20 ± 0.26; P < 0.0001). No significant difference was observed in the accuracy data of the simulation study with vendor-specific γ-cameras (P 5 0.266). Conclusion: In this study, we observed that the automated BSI accuracy and reproducibility were dependent on scanning speed but not on the vendor-specific γ-cameras. Prospective BSI studies should standardize scanning speed of bone scans to obtain image counts at or above 1.5 million.
  •  
2.
  • Kaboteh, Reza, et al. (författare)
  • Evaluation of changes in Bone Scan Index at different acquisition time-points in bone scintigraphy
  • 2018
  • Ingår i: Clinical Physiology and Functional Imaging. - : Wiley. - 1475-0961. ; 38:6, s. 1015-1020
  • Tidskriftsartikel (refereegranskat)abstract
    • Bone Scan Index (BSI) is a validated imaging biomarker to objectively assess tumour burden in bone in patients with prostate cancer, and can be used to monitor treatment response. It is not known if BSI is significantly altered when images are acquired at a time difference of 1h. The aim of this study was to investigate if automatic calculation of BSI is affected when images are acquired 1hour apart, after approximately 3 and 4h. We prospectively studied patients with prostate cancer who were referred for bone scintigraphy according to clinical routine. The patients performed a whole-body bone scan at approximately 3h after injection of radiolabelled bisphosphonate and a second 1h after the first. BSI values for each bone scintigraphy were obtained using EXINI bone(BSI) software. A total of 25 patients were included. Median BSI for the first acquisition was 005 (range 0-1193) and for the second acquisition 021 (range 0-1306). There was a statistically significant increase in BSI at the second image acquisition compared to the first (P<0001). In seven of 25 patients (28%) and in seven of 13 patients with BSI>0 (54%), a clinically significant increase (>03) was observed. The time between injection and scanning should be fixed when changes in BSI are important, for example when monitoring therapeutic efficacy.
  •  
3.
  • Reza Felix, Mariana, et al. (författare)
  • Bone Scan Index and Progression-free Survival Data for Progressive Metastatic Castration-resistant Prostate Cancer Patients Who Received ODM-201 in the ARADES Multicentre Study
  • 2016
  • Ingår i: European Urology Focus. - : Elsevier BV. - 2405-4569. ; 2:5, s. 547-552
  • Tidskriftsartikel (refereegranskat)abstract
    • Background ODM-201, a new-generation androgen receptor inhibitor, has shown clinical efficacy in prostate cancer (PCa). Quantitative methods are needed to accurately assess changes in bone as a measurement of treatment response. The Bone Scan Index (BSI) reflects the percentage of skeletal mass a given tumour affects. Objective To evaluate the predictive value of the BSI in metastatic castration-resistant PCa (mCRPC) patients undergoing treatment with ODM-201. Design, setting, and participants From a total of 134 mCRPC patients who participated in the Activity and Safety of ODM-201 in Patients with Progressive Metastatic Castration-resistant Prostate Cancer clinical trial and received ODM-201, we retrospectively selected all those patients who had bone scan image data of sufficient quality to allow for both baseline and 12-wk follow-up BSI-assessments (n = 47). We used the automated EXINI bone BSI software (EXINI Diagnostics AB, Lund, Sweden) to obtain BSI data. Outcome measurements and statistical analysis We used the Cox proportional hazards model and Kaplan-Meier estimates to investigate the association among BSI, traditional clinical parameters, disease progression, and radiographic progression-free survival (rPFS). Results and limitations In the BSI assessments, at follow-up, patients who had a decrease or at most a 20% increase from BSI baseline had a significantly longer time to progression in bone (median not reached vs 23 wk, hazard ratio [HR]: 0.20; 95% confidence interval [CI], 0.07–0.58; p = 0.003) and rPFS (median: 50 wk vs 14 wk; HR: 0.35; 95% CI, 0.17–0.74; p = 0.006) than those who had a BSI increase >20% during treatment. Conclusions The on-treatment change in BSI was significantly associated with rPFS in mCRPC patients, and an increase >20% in BSI predicted reduced rPFS. BSI for quantification of bone metastases may be a valuable complementary method for evaluation of treatment response in mCRPC patients. Patient summary An increase in Bone Scan Index (BSI) was associated with shorter time to disease progression in patients treated with ODM-201. BSI may be a valuable method of complementing treatment response evaluation in patients with advanced prostate cancer.
  •  
4.
  • Reza Felix, Mariana, et al. (författare)
  • Bone Scan Index as an Imaging Biomarker in Metastatic Castration-resistant Prostate Cancer : A Multicentre Study Based on Patients Treated with Abiraterone Acetate (Zytiga) in Clinical Practice
  • 2016
  • Ingår i: European Urology Focus. - : Elsevier BV. - 2405-4569. ; 2:5, s. 540-546
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Abiraterone acetate (AA) prolongs survival in metastatic castration-resistant prostate cancer (mCRPC) patients. To measure treatment response accurately in bone, quantitative methods are needed. The Bone Scan Index (BSI), a prognostic imaging biomarker, reflects the tumour burden in bone as a percentage of the total skeletal mass calculated from bone scintigraphy. Objective To evaluate the value of BSI as a biomarker for outcome evaluation in mCRPC patients on treatment with AA according to clinical routine. Design, setting, and participants We retrospectively studied 104 mCRPC patients who received AA following disease progression after chemotherapy. All patients underwent whole-body bone scintigraphy before and during AA treatment. Baseline and follow-up BSI data were obtained using EXINI BoneBSI software (EXINI Diagnostics AB, Lund, Sweden). Outcome measurements and statistical analysis Associations between change in BSI, clinical parameters at follow-up, and overall survival (OS) were evaluated using the Cox proportional hazards regression models and Kaplan-Meier estimates. Discrimination between variables was assessed using the concordance index (C-index). Results and limitations Patients with an increase in BSI at follow-up of at most 0.30 (n = 54) had a significantly longer median survival time than those with an increase of BSI >0.30 (n = 50) (median: 16 vs 10 mo; p = 0.001). BSI change was also associated with OS in a multivariate Cox analysis including commonly used clinical parameters for prognosis (C-index = 0.7; hazard ratio: 1.1; p = 0.03). The retrospective design was a limitation. Conclusions Change in BSI was significantly associated with OS in mCRPC patients undergoing AA treatment following disease progression in a postchemotherapy setting. BSI may be a useful imaging biomarker for outcome evaluation in this group of patients, and it could be a valuable complementary tool in monitoring patients with mCRPC on second-line therapies. Patient summary Bone Scan Index (BSI) change is related to survival time in metastatic castration-resistant prostate cancer (mCRPC) patients on abiraterone acetate. BSI may be a valuable complementary decision-making tool supporting physicians monitoring patients with mCRPC on second-line therapies.
  •  
5.
  • Reza, Mariana, et al. (författare)
  • A prospective study to evaluate the intra-individual reproducibility of bone scans for quantitative assessment in patients with metastatic prostate cancer
  • 2018
  • Ingår i: BMC Medical Imaging. - : Springer Science and Business Media LLC. - 1471-2342. ; 18:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The Bone Scan Index (BSI) is used to quantitatively assess the total tumour burden in bone scans of patients with metastatic prostate cancer. The clinical utility of BSI has recently been validated as a prognostic imaging biomarker. However, the clinical utility of the on-treatment change in BSI is dependent on the reproducibility of bone scans. The objective of this prospective study is to evaluate the intra-patient reproducibility of two bone scan procedures performed at a one-week interval. Methods: We prospectively studied prostate cancer patients who were referred for bone scintigraphy at our centres according to clinical routine. All patients underwent two whole-body bone scans: one for clinical routine purposes and a second one as a repeated scan after approximately one week. BSI values were obtained for each bone scintigraph using EXINI boneBSI software. Results: A total of 20 patients were enrolled. There was no statistical difference between the BSI values of the first (median = 0.66, range 0-40.77) and second (median = 0.63, range 0-22.98) bone scans (p = 0.41). The median difference in BSI between the clinical routine and repeated scans was - 0.005 (range - 17.79 to 0). The 95% confidence interval for the median value was - 0.1 to 0. A separate analysis was performed for patients with BSI ≤ 10 (n = 17). Differences in BSI were smaller for patients with BSI ≤ 10 compared to the whole cohort (median - 0.1, range - 2.2-0, 95% confidence interval - 0.1 to 0). Conclusions: The automated BSI demonstrated high intra-individual reproducibility for BSI ≤ 10 in the two repeated bone scans of patients with prostate cancer. The study supports the use of BSI as a quantitative parameter to evaluate the change in total tumour burden in bone scans.
  •  
6.
  • Reza, Mariana, et al. (författare)
  • Automated Bone Scan Index as an Imaging Biomarker to Predict Overall Survival in the Zometa European Study/SPCG11
  • 2021
  • Ingår i: European Urology Oncology. - : Elsevier BV. - 2588-9311. ; 4:1, s. 49-55
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Owing to the large variation in treatment response among patients with high-risk prostate cancer, it would be of value to use objective tools to monitor the status of bone metastases during clinical trials. Automated Bone Scan Index (aBSI) based on artificial intelligence has been proposed as an imaging biomarker for the quantification of skeletal metastases from bone scintigraphy.OBJECTIVE: To investigate how an increase in aBSI during treatment may predict clinical outcome in a randomised controlled clinical trial including patients with high-risk prostate cancer.DESIGN, SETTING, AND PARTICIPANTS: We retrospectively selected all patients from the Zometa European Study (ZEUS)/SPCG11 study with image data of sufficient quality to allow for aBSI assessment at baseline and at 48-mo follow-up. Data on aBSI were obtained using EXINIboneBSI software, blinded for clinical data and randomisation of zoledronic acid treatment. Data on age, overall survival (OS), and prostate-specific antigen (PSA) at baseline and upon follow-up were available from the study database.OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Association between clinical parameters and aBSI increase during treatment was evaluated using Cox proportional-hazards regression models, Kaplan-Meier estimates, and log-rank test. Discrimination between prognostic variables was assessed using the concordance index (C-index).RESULTS AND LIMITATIONS: In this cohort, 176 patients with bone metastases and a change in aBSI from baseline to follow-up of ≤0.3 had a significantly longer median survival time than patients with an aBSI change of >0.3 (p<0.0001). The increase in aBSI was significantly associated with OS (p<0.01 and C-index=0.65), while age and PSA change were not.CONCLUSIONS: The aBSI used as an objective imaging biomarker predicted outcome in prostate cancer patients in the ZEUS/SPCG11 study. An analysis of the change in aBSI from baseline to 48-mo follow-up represents a valuable tool for prognostication and monitoring of prostate cancer patients with bone metastases.PATIENT SUMMARY: The increase in the burden of skeletal metastases, as measured by the automated Bone Scan Index (aBSI), during treatment was associated with overall survival in patients from the Zometa European Study/SPCG11 study. The aBSI may be a useful tool also in monitoring prostate cancer patients with newly developed bone metastases.
  •  
7.
  • Reza, Mariana, et al. (författare)
  • Bone Scan Index as a prognostic imaging biomarker during androgen deprivation therapy.
  • 2014
  • Ingår i: EJNMMI Research. - : Springer Science and Business Media LLC. - 2191-219X. ; 4
  • Tidskriftsartikel (refereegranskat)abstract
    • Bone Scan Index (BSI) is a quantitative measurement of tumour burden in the skeleton calculated from bone scan images. When analysed at the time of diagnosis, it has been shown to provide prognostic information on survival in men with metastatic prostate cancer (PCa). In this study, we evaluated the prognostic value of BSI during androgen deprivation therapy (ADT).
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy