SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Tranvik Lars J.) ;pers:(Langenheder Silke)"

Sökning: WFRF:(Tranvik Lars J.) > Langenheder Silke

  • Resultat 1-10 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Besemer, Katharina, et al. (författare)
  • Unraveling assembly of stream biofilm communities
  • 2012
  • Ingår i: The ISME Journal: multidisciplinary journal of microbial ecology. - : Springer Science and Business Media LLC. - 1751-7362. ; 6:8, s. 1459-1468
  • Tidskriftsartikel (refereegranskat)abstract
    • Microbial biofilms assemble from cells that attach to a surface, where they develop into matrix-enclosed communities. Mechanistic insights into community assembly are crucial to better understand the functioning of natural biofilms, which drive key ecosystem processes in numerous aquatic habitats. We studied the role of the suspended microbial community as the source of the biofilm community in three streams using terminal-restriction fragment length polymorphism and 454 pyrosequencing of the 16S ribosomal RNA (rRNA) and the 16S rRNA gene (as a measure for the active and the bulk community, respectively). Diversity was consistently lower in the biofilm communities than in the suspended stream water communities. We propose that the higher diversity in the suspended communities is supported by continuous inflow from various sources within the catchment. Community composition clearly differed between biofilms and suspended communities, whereas biofilm communities were similar in all three streams. This suggests that biofilm assembly did not simply reflect differences in the source communities, but that certain microbial groups from the source community proliferate in the biofilm. We compared the biofilm communities with random samples of the respective community suspended in the stream water. This analysis confirmed that stochastic dispersal from the source community was unlikely to shape the observed community composition of the biofilms, in support of species sorting as a major biofilm assembly mechanism. Bulk and active populations generated comparable patterns of community composition in the biofilms and the suspended communities, which suggests similar assembly controls on these populations.
  •  
2.
  •  
3.
  •  
4.
  • Langenheder, Silke, et al. (författare)
  • Growth dynamics within bacterial communities in riverine and estuarine batch cultures
  • 2004
  • Ingår i: Aquatic Microbial Ecology. - : Inter-Research Science Center. - 0948-3055 .- 1616-1564. ; 37, s. 137-148
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigated temporal changes in community composition of bacteria growing on riverine dissolved organic carbon. Batch cultures were adjusted to riverine or estuarine salinity levels and inoculated with bacteria from these 2 environments to test whether growth patterns of bacterial taxa are influenced by salinity and/or the source of the inoculum. Changes in bacterial community composition at different stages of the growth phase were studied by 16S rDNA denaturing gradient gel electrophoresis (DGGE). Furthermore, the growth dynamics of 7 bacteria previously isolated from the estuary were followed by quantitative DNA-DNA hybridization. Growth dynamics within bacterial communities were significantly influenced by the source of the inoculum but not by salinity, suggesting that slight changes in salinity, to which riverine bacteria are exposed when discharged into the Northern Baltic Sea, are not a major regulating factor of community dynamics. Additionally, our results indicated only minor differences in the appearance and growth of bacteria when examined by quantitative DNA-DNA hybridization, whereas DGGE banding patterns suggested that there were fast- and slow-growing types of bacteria.
  •  
5.
  • Langenheder, Silke, et al. (författare)
  • Salinity as a structuring factor for the composition and performance of bacterioplankton degrading riverine DOC
  • 2003
  • Ingår i: FEMS Microbiology Ecology. - 0168-6496 .- 1574-6941. ; 45:2, s. 189-202
  • Tidskriftsartikel (refereegranskat)abstract
    • The impact of salinity on the composition and functional performance (biomass production, growth efficiency and growth rates) of bacterial communities was investigated using batch cultures growing on dissolved organic carbon from a river draining into the Northern Baltic Sea. The cultures were adjusted to riverine or estuarine salinity levels and inoculated with bacteria from these two environments. Bacterial growth efficiencies differed in response to salinity and the origin of the inoculum. When salinity was adjusted to correspond to the salinity at the site where the inoculum was retrieved, growth efficiency was relatively high (11.5 +/- 2.6%). However, when bacteria were confronted with a shift in salinity, growth efficiency was lower (7.5 +/- 2.0%) and more of the utilized carbon was respired. In contrast, growth rates were higher when bacteria were exposed to a change in salinity. The composition of the bacterial communities developing in the batch cultures differed, as shown by 16S rDNA DGGE, depending on the origin of the inoculum and salinity. Reverse and direct DNA-DNA hybridization revealed salinity optima in the growth of specific bacterial strains as well as broader phylogenetic groups. Strains belonging to the alpha- and beta-Proteobacteria, Actinobacteria and gamma-Proteobacteria other than the genus Pseudomonas showed higher relative abundance under freshwater conditions, whereas strains of the genus Pseudomonas and the Cytophaga-Flavobacterium-Bacteroides group were favored by estuarine conditions. Generally, our results demonstrate functional changes associated with changes in community composition. We suggest that even moderate changes in salinity affect bacterial community composition, which subsequently leads to altered growth characteristics. (C) 2003 Federation of European Microbiological Societies. Published by Elsevier Science B.V. All rights reserved.
  •  
6.
  •  
7.
  •  
8.
  • Langenheder, Silke, et al. (författare)
  • Weak coupling between community composition and functioning of aquatic bacteria
  • 2005
  • Ingår i: Limnology and Oceanography. - : Wiley. - 0024-3590 .- 1939-5590. ; 50:3, s. 957-967
  • Tidskriftsartikel (refereegranskat)abstract
    • We performed a batch culture experiment with a factorial design in which sterile water from four lakes and bacterial assemblages (size-fractionated lake water) from the same lakes were set up in all possible combinations. The functional performance (biomass yield, respiration, growth rates, and growth efficiency) of bacterial communities growing in the cultures depended primarily on the type of the medium and to a much lesser extent on the origin of the bacterial assemblage. Functional changes were only partly paralleled by changes in community composition, as indicated by terminal restriction fragment length polymorphism analysis. Similar bacterial communities developed in different cultures as a result of receiving either the same medium or the same inoculum, indicating that bacterial communities are comprised of populations of generalists that can grow under most conditions as well as populations with the life strategy of specialists. However, bacteria originating from a slightly acidic polyhumic lake failed to grow, grew unsteadily, or exhibited an extended lag phase when exposed to media originating from other lakes, indicating that the bacterial community in the polyhumic lake was not able to adapt rapidly to changes in environmental conditions.
  •  
9.
  •  
10.
  • Münzner, Karla, 1989- (författare)
  • Causes and consequences of Gonyostomum semen blooms
  • 2022
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Aquatic ecosystems provide essential ecosystem services, but are also highly vulnerable to global change. Climate change, eutrophication and browning, for example, collectively drive the increase of harmful algal blooms in freshwaters. While cyanobacterial blooms have been intensively studied, blooms caused by other algal species have received far less attention.The aim of my thesis was to increase our understanding of the causes and consequences of the freshwater raphidophyte Gonyostomum semen (Ehrenberg) Diesing, which forms high biomass blooms in lakes all over the world. I used laboratory experiments, field studies and lake monitoring data to investigate how G. semen growth is affected by environmental factors related to water color, and how G. semen blooms affect carbon cycling in lakes.High iron concentration (>200 µg L-1) was found to be a requirement for G. semen growth, but not for bloom formation. Rather, increase in dissolved organic carbon (DOC) concentration may drive bloom formation, possibly by a combination of providing additional nutrients to lakes as DOC is imported from terrestrial sources, and by reducing light availability for other competing phytoplankton species. Gonyostomum semen can possibly avoid light limitation and form blooms over a wide range of DOC concentration (8 – 20 mg L-1) due to its diel vertical migration and special pigment composition, although there likely exists a DOC threshold at which also G. semen growth becomes light limited.By fixing CO2 through photosynthesis, G. semen did considerably reduce the partial pressure of CO2 (pCO2) in the studied lakes. Furthermore, the relationship between pCO2 and G. semen became stronger with decreasing DOC concentration, suggesting that reduction in pCO2 caused by G. semen is highest in moderately colored lakes (8 – 12 mg DOC L-1). This resulted in temporary reduction in CO2 emission to the atmosphere during summer, though it is unlikely that it changes annual carbon emissions. Organic matter (OM) generated by G. semen was transported to the sediments, though this did not appear to affect carbon burial rates. However, G. semen increased the fraction of autochthonous OM that sank to the sediment, which may result in altered CO2 and methane (CH4) production on a short-term basis.In summary, G. semen growth is dependent on sufficient iron concentrations, while bloom formation is likely controlled by DOC. Blooms temporarily affect in-lake carbon dynamics through increased rates of CO2 fixation via photosynthesis, transport of autochthonous OM to the sediment and subsequent changes in CO2 and CH4 production. Thus, G. semen may contribute to changes in ecosystem functioning in lakes experiencing browning.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy