SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Trojanowski John) ;pers:(Irwin David J)"

Sökning: WFRF:(Trojanowski John) > Irwin David J

  • Resultat 1-10 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kovacs, Gabor G., et al. (författare)
  • Multisite Assessment of Aging-Related Tau Astrogliopathy (ARTAG)
  • 2017
  • Ingår i: Journal of Neuropathology and Experimental Neurology. - : Oxford University Press (OUP). - 0022-3069 .- 1554-6578. ; 76:7, s. 605-619
  • Tidskriftsartikel (refereegranskat)abstract
    • Aging-related tau astrogliopathy (ARTAG) is a recently introduced terminology. To facilitate the consistent identification of ARTAG and to distinguish it from astroglial tau pathologies observed in the primary frontotemporal lobar degeneration tauopathies we evaluated how consistently neuropathologists recognize (1) different astroglial tau immunoreactivities, including those of ARTAG and those associated with primary tauopathies (Study 1); (2) ARTAG types (Study 2A); and (3) ARTAG severity (Study 2B). Microphotographs and scanned sections immunostained for phosphorylated tau (AT8) were made available for download and preview. Percentage of agreement and kappa values with 95% confidence interval (CI) were calculated for each evaluation. The overall agreement for Study 1 was > 60% with a kappa value of 0.55 (95% CI 0.433-0.645). Moderate agreement (> 90%, kappa 0.48, 95% CI 0.457-0.900) was reached in Study 2A for the identification of ARTAG pathology for each ARTAG subtype (kappa 0.37-0.72), whereas fair agreement (kappa 0.40, 95% CI 0.341-0.445) was reached for the evaluation of ARTAG severity. The overall assessment of ARTAG showed moderate agreement (kappa 0.60, 95% CI 0.534-0.653) among raters. Our study supports the application of the current harmonized evaluation strategy for ARTAG with a slight modification of the evaluation of its severity.
  •  
2.
  • Ravikumar, Sadhana, et al. (författare)
  • Ex vivo MRI atlas of the human medial temporal lobe : characterizing neurodegeneration due to tau pathology
  • 2021
  • Ingår i: Acta Neuropathologica Communications. - : Springer Science and Business Media LLC. - 2051-5960. ; 9:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Tau neurofibrillary tangle (NFT) pathology in the medial temporal lobe (MTL) is closely linked to neurodegeneration, and is the early pathological change associated with Alzheimer’s disease (AD). To elucidate patterns of structural change in the MTL specifically associated with tau pathology, we compared high-resolution ex vivo MRI scans of human postmortem MTL specimens with histology-based pathological assessments of the MTL. MTL specimens were obtained from twenty-nine brain donors, including patients with AD, other dementias, and individuals with no known history of neurological disease. Ex vivo MRI scans were combined using a customized groupwise diffeomorphic registration approach to construct a 3D probabilistic atlas that captures the anatomical variability of the MTL. Using serial histology imaging in eleven specimens, we labelled the MTL subregions in the atlas based on cytoarchitecture. Leveraging the atlas and neuropathological ratings of tau and TAR DNA-binding protein 43 (TDP-43) pathology severity, morphometric analysis was performed to correlate regional MTL thickness with the severity of tau pathology, after correcting for age and TDP-43 pathology. We found significant correlations between tau pathology and thickness in the entorhinal cortex (ERC) and stratum radiatum lacunosum moleculare (SRLM). When focusing on cases with low levels of TDP-43 pathology, we found strong associations between tau pathology and thickness in the ERC, SRLM and the subiculum/cornu ammonis 1 (CA1) subfields of the hippocampus, consistent with early Braak stages.
  •  
3.
  • Ravikumar, Sadhana, et al. (författare)
  • Improved Segmentation of Deep Sulci in Cortical Gray Matter Using a Deep Learning Framework Incorporating Laplace’s Equation
  • 2023
  • Ingår i: Information Processing in Medical Imaging - 28th International Conference, IPMI 2023, Proceedings. - 1611-3349 .- 0302-9743. - 9783031340475 ; 13939 LNCS, s. 692-704
  • Konferensbidrag (refereegranskat)abstract
    • When developing tools for automated cortical segmentation, the ability to produce topologically correct segmentations is important in order to compute geometrically valid morphometry measures. In practice, accurate cortical segmentation is challenged by image artifacts and the highly convoluted anatomy of the cortex itself. To address this, we propose a novel deep learning-based cortical segmentation method in which prior knowledge about the geometry of the cortex is incorporated into the network during the training process. We design a loss function which uses the theory of Laplace’s equation applied to the cortex to locally penalize unresolved boundaries between tightly folded sulci. Using an ex vivo MRI dataset of human medial temporal lobe specimens, we demonstrate that our approach outperforms baseline segmentation networks, both quantitatively and qualitatively.
  •  
4.
  • Sadaghiani, Shokufeh, et al. (författare)
  • Associations of phosphorylated tau pathology with whole-hemisphere ex vivo morphometry in 7 tesla MRI
  • 2023
  • Ingår i: Alzheimer's and Dementia. - : Wiley. - 1552-5260 .- 1552-5279. ; 19:6, s. 2355-2364
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: Neurodegenerative disorders are associated with different pathologies that often co-occur but cannot be measured specifically with in vivo methods. Methods: Thirty-three brain hemispheres from donors with an Alzheimer's disease (AD) spectrum diagnosis underwent T2-weighted magnetic resonance imaging (MRI). Gray matter thickness was paired with histopathology from the closest anatomic region in the contralateral hemisphere. Results: Partial Spearman correlation of phosphorylated tau and cortical thickness with TAR DNA-binding protein 43 (TDP-43) and α-synuclein scores, age, sex, and postmortem interval as covariates showed significant relationships in entorhinal and primary visual cortices, temporal pole, and insular and posterior cingulate gyri. Linear models including Braak stages, TDP-43 and α-synuclein scores, age, sex, and postmortem interval showed significant correlation between Braak stage and thickness in the parahippocampal gyrus, entorhinal cortex, and Broadman area 35. Conclusion: We demonstrated an association of measures of AD pathology with tissue loss in several AD regions despite a limited range of pathology in these cases. Highlights: Neurodegenerative disorders are associated with co-occurring pathologies that cannot be measured specifically with in vivo methods. Identification of the topographic patterns of these pathologies in structural magnetic resonance imaging (MRI) may provide probabilistic biomarkers. We demonstrated the correlation of the specific patterns of tissue loss from ex vivo brain MRI with underlying pathologies detected in postmortem brain hemispheres in patients with Alzheimer's disease (AD) spectrum disorders. The results provide insight into the interpretation of in vivo structural MRI studies in patients with AD spectrum disorders.
  •  
5.
  • Young, Alexandra L., et al. (författare)
  • Empirical pathological staging and subtyping of TDP-43 proteinopathies
  • 2022
  • Ingår i: Alzheimer's and Dementia. - : Wiley. - 1552-5260 .- 1552-5279. ; 18:S4
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Pathological aggregation of tar DNA-binding protein 43 (TDP-43) in the brain is the primary cause of many cases of frontotemporal lobar degeneration (FTLD), amyotrophic lateral sclerosis (ALS) and limbic-predominant age-related TDP-43 encephalopathy (LATE). It is therefore imperative to establish empirical staging systems to characterize and distinguish stereotypical patterns and commonplace deviations of different TDP-43 proteinopathies. Method: We use ordinal ratings of TDP-43 burden from 19 brain regions to perform data-driven disease progression modeling (SuStaIn) to find the most likely trajectories for FTLD-TDP (n = 108), ALS (n = 137) and LATE (n = 283) from the CNDR Brain Bank at the University of Pennsylvania. Subtype number was defined using cross-validated information criterion. Each individual was assigned a subtype and stage. Multivariate OLS models tested differences between subtypes. Stages were compared to age and existing staging schemes. Cross-validated logistic regression was used for 3-way classification using SuStaIn information only. Result: SuStaIn provided data-driven staging of TDP-43 proteinopathies complementing previously described human-defined staging schema, further providing additional detail (Fig1A-C; Fig3A-C). SuStaIn also identified two distinct subtypes within FTLD-TDP and a further two within ALS (Fig1D). FTLD-TDP subtypes differed in TDP-43 type and Alzheimer’s disease pathology (Table1); ALS subtypes were differentiated by age (Table 2) and by antemortem clinical characteristics. No subtypes were observed for the LATE group. Progression along data-driven stages was positively associated with age in LATE individuals, but negatively associated with age in individuals with FTLD-TDP (Fig2). Using only regional TDP-43 severity, our data driven model could distinguish individuals diagnosed with ALS, FTD or LATE with a cross-validated balanced precision of 0.93 and balanced recall of 0.92, and these metrics improved to 0.95 and 0.96 when combined with a logistic regression model (Fig3). Very little stage overlap was found between FTLD-TDP and LATE, but stages that did overlap showed subtly different patterns (Fig4). Conclusion: We provide an empirical pathological staging system for ALS, FTLD-TDP and LATE, which is sufficient for staging and accurate classification. We demonstrate that there is substantial heterogeneity amongst ALS and FTLD-TDP progression patterns, whilst LATE exhibits a homogeneous progression pattern.
  •  
6.
  • Yushkevich, Paul A., et al. (författare)
  • Three-dimensional mapping of neurofibrillary tangle burden in the human medial temporal lobe
  • 2021
  • Ingår i: Brain. - : Oxford University Press (OUP). - 0006-8950 .- 1460-2156. ; 144:9, s. 2784-2797
  • Tidskriftsartikel (refereegranskat)abstract
    • Tau protein neurofibrillary tangles are closely linked to neuronal/synaptic loss and cognitive decline in Alzheimer's disease and related dementias. Our knowledge of the pattern of neurofibrillary tangle progression in the human brain, critical to the development of imaging biomarkers and interpretation of in vivo imaging studies in Alzheimer's disease, is based on conventional two-dimensional histology studies that only sample the brain sparsely. To address this limitation, ex vivo MRI and dense serial histological imaging in 18 human medial temporal lobe specimens (age 75.3 ± 11.4 years, range 45 to 93) were used to construct three-dimensional quantitative maps of neurofibrillary tangle burden in the medial temporal lobe at individual and group levels. Group-level maps were obtained in the space of an in vivo brain template, and neurofibrillary tangles were measured in specific anatomical regions defined in this template. Three-dimensional maps of neurofibrillary tangle burden revealed significant variation along the anterior-posterior axis. While early neurofibrillary tangle pathology is thought to be confined to the transentorhinal region, we found similar levels of burden in this region and other medial temporal lobe subregions, including amygdala, temporopolar cortex, and subiculum/cornu ammonis 1 hippocampal subfields. Overall, the three-dimensional maps of neurofibrillary tangle burden presented here provide more complete information about the distribution of this neurodegenerative pathology in the region of the cortex where it first emerges in Alzheimer's disease, and may help inform the field about the patterns of pathology spread, as well as support development and validation of neuroimaging biomarkers.
  •  
7.
  • Cousins, Katheryn A Q, et al. (författare)
  • ATN incorporating cerebrospinal fluid neurofilament light chain detects frontotemporal lobar degeneration.
  • 2021
  • Ingår i: Alzheimer's & dementia : the journal of the Alzheimer's Association. - : Wiley. - 1552-5279. ; 17:5, s. 822-830
  • Tidskriftsartikel (refereegranskat)abstract
    • The ATN framework provides an in vivo diagnosis of Alzheimer's disease (AD) using cerebrospinal fluid (CSF) biomarkers of pathologic amyloid plaques (A), tangles (T), and neurodegeneration (N). ATN is rarely evaluated in pathologically confirmed patients and its poor sensitivity to suspected non-Alzheimer's pathophysiologies (SNAP), including frontotemporal lobar degeneration (FTLD), leads to misdiagnoses. We compared accuracy of ATN (ATNTAU ) using CSF total tau (t-tau) to a modified strategy (ATNNfL ) using CSF neurofilament light chain (NfL) in an autopsy cohort.ATNTAU and ATNNfL were trained in an independent sample and validated in autopsy-confirmed AD (n = 67) and FTLD (n = 27).ATNNfL more accurately identified FTLD as SNAP (sensitivity = 0.93, specificity = 0.94) than ATNTAU (sensitivity = 0.44, specificity = 0.97), even in cases with co-occurring AD and FTLD. ATNNfL misclassified fewer AD and FTLD as "Normal" (2%) than ATNTAU (14%).ATNNfL is a promising diagnostic strategy that may accurately identify both AD and FTLD, even when pathologies co-occur.
  •  
8.
  • Olsson, B, et al. (författare)
  • Association of Cerebrospinal Fluid Neurofilament Light Protein Levels With Cognition in Patients With Dementia, Motor Neuron Disease, and Movement Disorders.
  • 2019
  • Ingår i: JAMA neurology. - : American Medical Association (AMA). - 2168-6157 .- 2168-6149. ; 76:3, s. 318-325
  • Tidskriftsartikel (refereegranskat)abstract
    • Neuronal and axonal destruction are hallmarks of neurodegenerative diseases, but it is difficult to estimate the extent and progress of the damage in the disease process.To investigate cerebrospinal fluid (CSF) levels of neurofilament light (NFL) protein, a marker of neuroaxonal degeneration, in control participants and patients with dementia, motor neuron disease, and parkinsonian disorders (determined by clinical criteria and autopsy), and determine its association with longitudinal cognitive decline.In this case-control study, we investigated NFL levels in CSF obtained from controls and patients with several neurodegenerative diseases. Collection of samples occurred between 1996 and 2014, patients were followed up longitudinally for cognitive testing, and a portion were autopsied in a single center (University of Pennsylvania). Data were analyzed throughout 2016.Concentrations of NFL in CSF.Levels of CSF NFL and correlations with cognition scores.A total of 913 participants (mean [SD] age, 68.7 [10.0] years; 456 [49.9%] women) were included: 75 control participants plus 114 patients with mild cognitive impairment (MCI), 397 with Alzheimer disease, 96 with frontotemporal dementia, 68 with amyotrophic lateral sclerosis, 41 with Parkinson disease (PD), 19 with PD with MCI, 29 with PD dementia, 33 with dementia with Lewy bodies, 21 with corticobasal syndrome, and 20 with progressive supranuclear palsy. Cognitive testing follow-up occurred for 1 to 18 years (mean [SD], 0.98 [2.25] years); autopsy-verified diagnoses were available for 120 of 845 participants with diseases (14.2%). There was a stepwise increase in CSF NFL levels between control participants (median [range] score, 536 [398-777] pg/mL), participants with MCI (831 [526-1075] pg/mL), and those with Alzheimer disease (951 [758-1261] pg/mL), indicating that NFL levels increase with increasing cognitive impairment. Levels of NFL correlated inversely with baseline Mini-Mental State Examination scores (ρ, -0.19; P < .001) in the full cohort (n = 822) and annual score decline in the full cohort (ρ, 0.36, P < .001), participants with AD (ρ, 0.25; P < .001), and participants with FTD (ρ, 0.46; P = .003). Concentrations of NFL were highest in participants with amyotrophic lateral sclerosis (median [range], 4185 [2207-7453] pg/mL) and frontotemporal dementia (2094 [230-7744] pg/mL). In individuals with parkinsonian disorders, NFL concentrations were highest in those with progressive supranuclear palsy (median [range], 1578 [1287-3104] pg/mL) and corticobasal degeneration (1281 [828-2713] pg/mL). The NFL concentrations in CSF correlated with TDP-43 load in 13 of 17 brain regions in the full cohort. Adding NFL to β-amyloid 42, total tau, and phosphorylated tau increased accuracy of discrimination of diseases.Levels of CSF NFL are associated with cognitive impairments in patients with Alzheimer disease and frontotemporal dementia. In other neurodegenerative disorders, NFL levels appear to reflect the intensity of the neurodegenerative processes.
  •  
9.
  • Portelius, Erik, 1977, et al. (författare)
  • Cerebrospinal fluid neurogranin concentration in neurodegeneration: relation to clinical phenotypes and neuropathology.
  • 2018
  • Ingår i: Acta neuropathologica. - : Springer Science and Business Media LLC. - 1432-0533 .- 0001-6322. ; 136:3, s. 363-376
  • Tidskriftsartikel (refereegranskat)abstract
    • Neurogranin (Ng) is a post-synaptic protein that previously has been shown to be a biomarker for synaptic function when measured in cerebrospinal fluid (CSF). The CSF concentration of Ng is increased in Alzheimer's disease dementia (ADD), and even in the pre-dementia stage. In this prospective study, we used an enzyme-linked immunosorbent assay that quantifies Ng in CSF to test the performance of Ng as a marker of synaptic function. In 915 patients, CSF Ng was evaluated across several different neurodegenerative diseases. Of these 915 patients, 116 had a neuropathologically confirmed definitive diagnosis and the relation between CSF Ng and topographical distribution of different pathologies in the brain was evaluated. CSF Ng was specifically increased in ADD compared to eight other neurodegenerative diseases, including Parkinson's disease (p < 0.0001), frontotemporal dementia (p < 0.0001), and amyotrophic lateral sclerosis (p = 0.0002). Similar results were obtained in neuropathologically confirmed cases. Using a biomarker index to evaluate whether CSF Ng contributed diagnostic information to the core AD CSF biomarkers (amyloid β (Aβ), t-tau, and p-tau), we show that Ng significantly increased the discrimination between AD and several other disorders. Higher CSF Ng levels were positively associated with greater Aβ neuritic plaque (Consortium to Establish a Registry for Alzheimer's Disease (CERAD) neuritic plaque score, p = 0.0002) and tau tangle pathology (Braak neurofibrillary tangles staging, p = 0.0007) scores. In the hippocampus and amygdala, two brain regions heavily affected in ADD with high expression of Ng, CSF Ng was associated with plaque (p = 0.0006 and p < 0.0001), but not with tangle, α-synuclein, or TAR DNA-binding protein 43 loads. These data support that CSF Ng is increased specifically in ADD, that high CSF Ng concentrations likely reflect synaptic dysfunction and that CSF Ng is associated with β-amyloid plaque pathology.
  •  
10.
  • Sandelius, Åsa P, et al. (författare)
  • Elevated CSF GAP-43 is Alzheimer's disease specific and associated with tau and amyloid pathology.
  • 2019
  • Ingår i: Alzheimer's & dementia : the journal of the Alzheimer's Association. - : Wiley. - 1552-5279. ; 15:1, s. 55-64
  • Tidskriftsartikel (refereegranskat)abstract
    • The level of the presynaptic protein growth-associated protein 43 (GAP-43) in cerebrospinal fluid (CSF) has previously been shown to be increased in Alzheimer's disease (AD) and thus may serve as an outcome measure in clinical trials and facilitate earlier disease detection.We developed an enzyme-linked immunosorbent assay for CSF GAP-43 and measured healthy controls (n = 43), patients with AD (n = 275), or patients with other neurodegenerative diseases (n = 344). In a subpopulation (n = 93), CSF GAP-43 concentrations from neuropathologically confirmed cases were related to Aβ plaques, tau, α-synuclein, and TDP-43 pathologies.GAP-43 was significantly increased in AD compared to controls and most neurodegenerative diseases and correlated with the magnitude of neurofibrillary tangles and Aβ plaques in the hippocampus, amygdala, and cortex. GAP-43 was not associated to α-synuclein or TDP-43 pathology.The presynaptic marker GAP-43 is associated with both diagnosis and neuropathology of AD and thus may be useful as a sensitive and specific biomarker for clinical research.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 12
Typ av publikation
tidskriftsartikel (11)
konferensbidrag (1)
Typ av innehåll
refereegranskat (12)
Författare/redaktör
Trojanowski, John Q (12)
Grossman, Murray (11)
Lee, Edward B (8)
Wolk, David A (8)
Blennow, Kaj, 1958 (5)
visa fler...
Zetterberg, Henrik, ... (5)
Shaw, Leslie M (5)
Toledo, Jon B (5)
Elman, Lauren (5)
Lee, Virginia M-Y (5)
Robinson, John L. (5)
McMillan, Corey T (4)
Wisse, Laura E.M. (4)
Yushkevich, Paul A. (4)
McCluskey, Leo (4)
Ittyerah, Ranjit (4)
Weintraub, Daniel (4)
Insausti, Ricardo (4)
Ravikumar, Sadhana (4)
Artacho-Pérula, Emil ... (4)
Chen-Plotkin, Alice (4)
Tisdall, M. Dylan (4)
Prabhakaran, Karthik (4)
Portelius, Erik, 197 ... (3)
Xie, Long (3)
Schuck, Theresa (3)
Das, Sandhitsu R. (3)
De La Rosa-Prieto, C ... (3)
Sandelius, Åsa P (3)
Detre, John A (3)
McBride, Jennifer (3)
Lim, Sydney (3)
Bedard, Madigan L. (3)
Mizsei, Gabor (3)
Parada, Marta Córcol ... (3)
Hansson, Oskar (2)
Andreasson, Ulf, 196 ... (2)
Cullen, Nicholas C (2)
Höglund, Kina, 1976 (2)
Cebada-Sánchez, Sand ... (2)
Xie, Sharon X. (2)
Wolk, David (2)
de Onzoño Martin, Ma ... (2)
del Mar Arroyo Jimén ... (2)
Muñoz, Monica (2)
Romero, Francisco Ja ... (2)
del Pilar Marcos Rab ... (2)
Sánchez, Sandra Ceba ... (2)
González, José Carlo ... (2)
visa färre...
Lärosäte
Lunds universitet (6)
Göteborgs universitet (5)
Uppsala universitet (1)
Språk
Engelska (12)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (11)
Teknik (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy