SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Trojanowski John Q.) ;pers:(Grossman Murray)"

Sökning: WFRF:(Trojanowski John Q.) > Grossman Murray

  • Resultat 1-10 av 16
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Van Deerlin, Vivian M, et al. (författare)
  • Common variants at 7p21 are associated with frontotemporal lobar degeneration with TDP-43 inclusions
  • 2010
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 42:3, s. 234-239
  • Tidskriftsartikel (refereegranskat)abstract
    • Frontotemporal lobar degeneration (FTLD) is the second most common cause of presenile dementia. The predominant neuropathology is FTLD with TAR DNA-binding protein (TDP-43) inclusions (FTLD-TDP). FTLD-TDP is frequently familial, resulting from mutations in GRN (which encodes progranulin). We assembled an international collaboration to identify susceptibility loci for FTLD-TDP through a genome-wide association study of 515 individuals with FTLD-TDP. We found that FTLD-TDP associates with multiple SNPs mapping to a single linkage disequilibrium block on 7p21 that contains TMEM106B. Three SNPs retained genome-wide significance following Bonferroni correction (top SNP rs1990622, P = 1.08 x 10(-11); odds ratio, minor allele (C) 0.61, 95% CI 0.53-0.71). The association replicated in 89 FTLD-TDP cases (rs1990622; P = 2 x 10(-4)). TMEM106B variants may confer risk of FTLD-TDP by increasing TMEM106B expression. TMEM106B variants also contribute to genetic risk for FTLD-TDP in individuals with mutations in GRN. Our data implicate variants in TMEM106B as a strong risk factor for FTLD-TDP, suggesting an underlying pathogenic mechanism.
  •  
2.
  • Ferrari, Raffaele, et al. (författare)
  • Frontotemporal dementia and its subtypes: a genome-wide association study.
  • 2014
  • Ingår i: Lancet Neurology. - 1474-4465. ; 13:7, s. 686-699
  • Tidskriftsartikel (refereegranskat)abstract
    • Frontotemporal dementia (FTD) is a complex disorder characterised by a broad range of clinical manifestations, differential pathological signatures, and genetic variability. Mutations in three genes-MAPT, GRN, and C9orf72-have been associated with FTD. We sought to identify novel genetic risk loci associated with the disorder.
  •  
3.
  • Gallagher, Michael D., et al. (författare)
  • TMEM106B is a genetic modifier of frontotemporal lobar degeneration with C9orf72 hexanucleotide repeat expansions
  • 2014
  • Ingår i: Acta Neuropathologica. - : Springer Science and Business Media LLC. - 0001-6322 .- 1432-0533. ; 127:3, s. 407-418
  • Tidskriftsartikel (refereegranskat)abstract
    • Hexanucleotide repeat expansions in chromosome 9 open reading frame 72 (C9orf72) have recently been linked to frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis, and may be the most common genetic cause of both neurodegenerative diseases. Genetic variants at TMEM106B influence risk for the most common neuropathological subtype of FTLD, characterized by inclusions of TAR DNA-binding protein of 43 kDa (FTLD-TDP). Previous reports have shown that TMEM106B is a genetic modifier of FTLD-TDP caused by progranulin (GRN) mutations, with the major (risk) allele of rs1990622 associating with earlier age at onset of disease. Here, we report that rs1990622 genotype affects age at death in a single-site discovery cohort of FTLD patients with C9orf72 expansions (n = 14), with the major allele correlated with later age at death (p = 0.024). We replicate this modifier effect in a 30-site international neuropathological cohort of FTLD-TDP patients with C9orf72 expansions (n = 75), again finding that the major allele associates with later age at death (p = 0.016), as well as later age at onset (p = 0.019). In contrast, TMEM106B genotype does not affect age at onset or death in 241 FTLD-TDP cases negative for GRN mutations or C9orf72 expansions. Thus, TMEM106B is a genetic modifier of FTLD with C9orf72 expansions. Intriguingly, the genotype that confers increased risk for developing FTLD-TDP (major, or T, allele of rs1990622) is associated with later age at onset and death in C9orf72 expansion carriers, providing an example of sign epistasis in human neurodegenerative disease.
  •  
4.
  • de Flores, Robin, et al. (författare)
  • Characterization of hippocampal subfields using ex vivo MRI and histology data : Lessons for in vivo segmentation
  • 2020
  • Ingår i: Hippocampus. - : Wiley. - 1050-9631 .- 1098-1063. ; 30:6, s. 545-564
  • Tidskriftsartikel (refereegranskat)abstract
    • Hippocampal subfield segmentation on in vivo MRI is of great interest for cognition, aging, and disease research. Extant subfield segmentation protocols have been based on neuroanatomical references, but these references often give limited information on anatomical variability. Moreover, there is generally a mismatch between the orientation of the histological sections and the often anisotropic coronal sections on in vivo MRI. To address these issues, we provide a detailed description of hippocampal anatomy using a postmortem dataset containing nine specimens of subjects with and without dementia, which underwent a 9.4 T MRI and histological processing. Postmortem MRI matched the typical orientation of in vivo images and segmentations were generated in MRI space, based on the registered annotated histological sections. We focus on the following topics: the order of appearance of subfields, the location of subfields relative to macroanatomical features, the location of subfields in the uncus and tail and the composition of the dark band, a hypointense layer visible in T2-weighted MRI. Our main findings are that: (a) there is a consistent order of appearance of subfields in the hippocampal head, (b) the composition of subfields is not consistent in the anterior uncus, but more consistent in the posterior uncus, (c) the dark band consists only of the CA-stratum lacunosum moleculare, not the strata moleculare of the dentate gyrus, (d) the subiculum/CA1 border is located at the middle of the width of the hippocampus in the body in coronal plane, but moves in a medial direction from anterior to posterior, and (e) the variable location and composition of subfields in the hippocampal tail can be brought back to a body-like appearance when reslicing the MRI scan following the curvature of the tail. Our findings and this publicly available dataset will hopefully improve anatomical accuracy of future hippocampal subfield segmentation protocols.
  •  
5.
  • Ravikumar, Sadhana, et al. (författare)
  • Ex vivo MRI atlas of the human medial temporal lobe : characterizing neurodegeneration due to tau pathology
  • 2021
  • Ingår i: Acta Neuropathologica Communications. - : Springer Science and Business Media LLC. - 2051-5960. ; 9:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Tau neurofibrillary tangle (NFT) pathology in the medial temporal lobe (MTL) is closely linked to neurodegeneration, and is the early pathological change associated with Alzheimer’s disease (AD). To elucidate patterns of structural change in the MTL specifically associated with tau pathology, we compared high-resolution ex vivo MRI scans of human postmortem MTL specimens with histology-based pathological assessments of the MTL. MTL specimens were obtained from twenty-nine brain donors, including patients with AD, other dementias, and individuals with no known history of neurological disease. Ex vivo MRI scans were combined using a customized groupwise diffeomorphic registration approach to construct a 3D probabilistic atlas that captures the anatomical variability of the MTL. Using serial histology imaging in eleven specimens, we labelled the MTL subregions in the atlas based on cytoarchitecture. Leveraging the atlas and neuropathological ratings of tau and TAR DNA-binding protein 43 (TDP-43) pathology severity, morphometric analysis was performed to correlate regional MTL thickness with the severity of tau pathology, after correcting for age and TDP-43 pathology. We found significant correlations between tau pathology and thickness in the entorhinal cortex (ERC) and stratum radiatum lacunosum moleculare (SRLM). When focusing on cases with low levels of TDP-43 pathology, we found strong associations between tau pathology and thickness in the ERC, SRLM and the subiculum/cornu ammonis 1 (CA1) subfields of the hippocampus, consistent with early Braak stages.
  •  
6.
  • Ravikumar, Sadhana, et al. (författare)
  • Improved Segmentation of Deep Sulci in Cortical Gray Matter Using a Deep Learning Framework Incorporating Laplace’s Equation
  • 2023
  • Ingår i: Information Processing in Medical Imaging - 28th International Conference, IPMI 2023, Proceedings. - 1611-3349 .- 0302-9743. - 9783031340475 ; 13939 LNCS, s. 692-704
  • Konferensbidrag (refereegranskat)abstract
    • When developing tools for automated cortical segmentation, the ability to produce topologically correct segmentations is important in order to compute geometrically valid morphometry measures. In practice, accurate cortical segmentation is challenged by image artifacts and the highly convoluted anatomy of the cortex itself. To address this, we propose a novel deep learning-based cortical segmentation method in which prior knowledge about the geometry of the cortex is incorporated into the network during the training process. We design a loss function which uses the theory of Laplace’s equation applied to the cortex to locally penalize unresolved boundaries between tightly folded sulci. Using an ex vivo MRI dataset of human medial temporal lobe specimens, we demonstrate that our approach outperforms baseline segmentation networks, both quantitatively and qualitatively.
  •  
7.
  • Ravikumar, Sadhana, et al. (författare)
  • Unfolding the Medial Temporal Lobe Cortex to Characterize Neurodegeneration Due to Alzheimer’s Disease Pathology Using Ex vivo Imaging
  • 2021
  • Ingår i: Machine Learning in Clinical Neuroimaging - 4th International Workshop, MLCN 2021, Held in Conjunction with MICCAI 2021, Proceedings. - Cham : Springer International Publishing. - 0302-9743 .- 1611-3349. - 9783030875855 ; 13001 LNCS, s. 3-12
  • Konferensbidrag (refereegranskat)abstract
    • Neurofibrillary tangle (NFT) pathology in the medial temporal lobe (MTL) is closely linked to neurodegeneration, and is the early pathological change associated with Alzheimer’s Disease (AD). In this work, we investigate the relationship between MTL morphometry features derived from high-resolution ex vivo imaging and histology-based measures of NFT pathology using a topological unfolding framework applied to a dataset of 18 human postmortem MTL specimens. The MTL has a complex 3D topography and exhibits a high degree of inter-subject variability in cortical folding patterns which poses a significant challenge for volumetric registration methods typically used during MRI template construction. By unfolding the MTL cortex, the proposed framework explicitly accounts for the sheet-like geometry of the MTL cortex and provides a two-dimensional reference coordinate space which can be used to implicitly register cortical folding patterns across specimens based on distance along the cortex despite large anatomical variability. Leveraging this framework in a subset of 15 specimens, we characterize the associations between NFTs and morphological features such as cortical thickness and surface curvature and identify regions in the MTL where patterns of atrophy are strongly correlated with NFT pathology.
  •  
8.
  • Sadaghiani, Shokufeh, et al. (författare)
  • Associations of phosphorylated tau pathology with whole-hemisphere ex vivo morphometry in 7 tesla MRI
  • 2023
  • Ingår i: Alzheimer's and Dementia. - : Wiley. - 1552-5260 .- 1552-5279. ; 19:6, s. 2355-2364
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: Neurodegenerative disorders are associated with different pathologies that often co-occur but cannot be measured specifically with in vivo methods. Methods: Thirty-three brain hemispheres from donors with an Alzheimer's disease (AD) spectrum diagnosis underwent T2-weighted magnetic resonance imaging (MRI). Gray matter thickness was paired with histopathology from the closest anatomic region in the contralateral hemisphere. Results: Partial Spearman correlation of phosphorylated tau and cortical thickness with TAR DNA-binding protein 43 (TDP-43) and α-synuclein scores, age, sex, and postmortem interval as covariates showed significant relationships in entorhinal and primary visual cortices, temporal pole, and insular and posterior cingulate gyri. Linear models including Braak stages, TDP-43 and α-synuclein scores, age, sex, and postmortem interval showed significant correlation between Braak stage and thickness in the parahippocampal gyrus, entorhinal cortex, and Broadman area 35. Conclusion: We demonstrated an association of measures of AD pathology with tissue loss in several AD regions despite a limited range of pathology in these cases. Highlights: Neurodegenerative disorders are associated with co-occurring pathologies that cannot be measured specifically with in vivo methods. Identification of the topographic patterns of these pathologies in structural magnetic resonance imaging (MRI) may provide probabilistic biomarkers. We demonstrated the correlation of the specific patterns of tissue loss from ex vivo brain MRI with underlying pathologies detected in postmortem brain hemispheres in patients with Alzheimer's disease (AD) spectrum disorders. The results provide insight into the interpretation of in vivo structural MRI studies in patients with AD spectrum disorders.
  •  
9.
  • Cousins, Katheryn A Q, et al. (författare)
  • ATN incorporating cerebrospinal fluid neurofilament light chain detects frontotemporal lobar degeneration.
  • 2021
  • Ingår i: Alzheimer's & dementia : the journal of the Alzheimer's Association. - : Wiley. - 1552-5279. ; 17:5, s. 822-830
  • Tidskriftsartikel (refereegranskat)abstract
    • The ATN framework provides an in vivo diagnosis of Alzheimer's disease (AD) using cerebrospinal fluid (CSF) biomarkers of pathologic amyloid plaques (A), tangles (T), and neurodegeneration (N). ATN is rarely evaluated in pathologically confirmed patients and its poor sensitivity to suspected non-Alzheimer's pathophysiologies (SNAP), including frontotemporal lobar degeneration (FTLD), leads to misdiagnoses. We compared accuracy of ATN (ATNTAU ) using CSF total tau (t-tau) to a modified strategy (ATNNfL ) using CSF neurofilament light chain (NfL) in an autopsy cohort.ATNTAU and ATNNfL were trained in an independent sample and validated in autopsy-confirmed AD (n = 67) and FTLD (n = 27).ATNNfL more accurately identified FTLD as SNAP (sensitivity = 0.93, specificity = 0.94) than ATNTAU (sensitivity = 0.44, specificity = 0.97), even in cases with co-occurring AD and FTLD. ATNNfL misclassified fewer AD and FTLD as "Normal" (2%) than ATNTAU (14%).ATNNfL is a promising diagnostic strategy that may accurately identify both AD and FTLD, even when pathologies co-occur.
  •  
10.
  • Young, Alexandra L., et al. (författare)
  • Empirical pathological staging and subtyping of TDP-43 proteinopathies
  • 2022
  • Ingår i: Alzheimer's and Dementia. - : Wiley. - 1552-5260 .- 1552-5279. ; 18:S4
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Pathological aggregation of tar DNA-binding protein 43 (TDP-43) in the brain is the primary cause of many cases of frontotemporal lobar degeneration (FTLD), amyotrophic lateral sclerosis (ALS) and limbic-predominant age-related TDP-43 encephalopathy (LATE). It is therefore imperative to establish empirical staging systems to characterize and distinguish stereotypical patterns and commonplace deviations of different TDP-43 proteinopathies. Method: We use ordinal ratings of TDP-43 burden from 19 brain regions to perform data-driven disease progression modeling (SuStaIn) to find the most likely trajectories for FTLD-TDP (n = 108), ALS (n = 137) and LATE (n = 283) from the CNDR Brain Bank at the University of Pennsylvania. Subtype number was defined using cross-validated information criterion. Each individual was assigned a subtype and stage. Multivariate OLS models tested differences between subtypes. Stages were compared to age and existing staging schemes. Cross-validated logistic regression was used for 3-way classification using SuStaIn information only. Result: SuStaIn provided data-driven staging of TDP-43 proteinopathies complementing previously described human-defined staging schema, further providing additional detail (Fig1A-C; Fig3A-C). SuStaIn also identified two distinct subtypes within FTLD-TDP and a further two within ALS (Fig1D). FTLD-TDP subtypes differed in TDP-43 type and Alzheimer’s disease pathology (Table1); ALS subtypes were differentiated by age (Table 2) and by antemortem clinical characteristics. No subtypes were observed for the LATE group. Progression along data-driven stages was positively associated with age in LATE individuals, but negatively associated with age in individuals with FTLD-TDP (Fig2). Using only regional TDP-43 severity, our data driven model could distinguish individuals diagnosed with ALS, FTD or LATE with a cross-validated balanced precision of 0.93 and balanced recall of 0.92, and these metrics improved to 0.95 and 0.96 when combined with a logistic regression model (Fig3). Very little stage overlap was found between FTLD-TDP and LATE, but stages that did overlap showed subtly different patterns (Fig4). Conclusion: We provide an empirical pathological staging system for ALS, FTLD-TDP and LATE, which is sufficient for staging and accurate classification. We demonstrate that there is substantial heterogeneity amongst ALS and FTLD-TDP progression patterns, whilst LATE exhibits a homogeneous progression pattern.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 16
Typ av publikation
tidskriftsartikel (14)
konferensbidrag (2)
Typ av innehåll
refereegranskat (16)
Författare/redaktör
Trojanowski, John Q (16)
Irwin, David J (11)
Wolk, David A (9)
Lee, Edward B (7)
Lee, Virginia M-Y (7)
visa fler...
Elman, Lauren (6)
Ittyerah, Ranjit (6)
Blennow, Kaj, 1958 (5)
Zetterberg, Henrik, ... (5)
Shaw, Leslie M (5)
Xie, Long (5)
Wisse, Laura E.M. (5)
Yushkevich, Paul A. (5)
McCluskey, Leo (5)
Robinson, John L. (5)
Schuck, Theresa (5)
Das, Sandhitsu R. (5)
Insausti, Ricardo (5)
Ravikumar, Sadhana (5)
Artacho-Pérula, Emil ... (5)
Chen-Plotkin, Alice (5)
Tisdall, M. Dylan (5)
Prabhakaran, Karthik (5)
McMillan, Corey T (4)
Toledo, Jon B (4)
De La Rosa-Prieto, C ... (4)
Weintraub, Daniel (4)
Lim, Sydney (4)
Mizsei, Gabor (4)
Portelius, Erik, 197 ... (3)
van der Zee, Julie (3)
Van Broeckhoven, Chr ... (3)
van Swieten, John C (3)
Rohrer, Jonathan D (3)
Cairns, Nigel J. (3)
Sandelius, Åsa P (3)
Kwok, John B J (3)
Grafman, Jordan (3)
Detre, John A (3)
Wolk, David (3)
McBride, Jennifer (3)
Bedard, Madigan L. (3)
de Onzoño Martin, Ma ... (3)
del Mar Arroyo Jimén ... (3)
Muñoz, Monica (3)
Romero, Francisco Ja ... (3)
del Pilar Marcos Rab ... (3)
Sánchez, Sandra Ceba ... (3)
González, José Carlo ... (3)
visa färre...
Lärosäte
Lunds universitet (9)
Göteborgs universitet (5)
Karolinska Institutet (3)
Uppsala universitet (2)
Språk
Engelska (16)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (13)
Teknik (3)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy