SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Trygg Johan) ;pers:(Torell Frida)"

Sökning: WFRF:(Trygg Johan) > Torell Frida

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bengtsson, Anders A., et al. (författare)
  • Metabolic Profiling of Systemic Lupus Erythematosus and Comparison with Primary Sjögren’s Syndrome and Systemic Sclerosis
  • 2016
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 11:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Systemic lupus erythematosus (SLE) is a chronic inflammatory autoimmune disease which can affect most organ systems including skin, joints and the kidney. Clinically, SLE is a heterogeneous disease and shares features of several other rheumatic diseases, in particular primary Sjögrens syndrome (pSS) and systemic sclerosis (SSc), why it is difficult to diag- nose The pathogenesis of SLE is not completely understood, partly due to the heterogeneity of the disease. This study demonstrates that metabolomics can be used as a tool for improved diagnosis of SLE compared to other similar autoimmune diseases. We observed differences in metabolic profiles with a classification specificity above 67% in the comparison of SLE with pSS, SSc and a matched group of healthy individuals. Selected metabolites were also significantly different between studied diseases. Biochemical pathway analysis was conducted to gain understanding of underlying pathways involved in the SLE pathogenesis. We found an increased oxidative activity in SLE, supported by increased xanthine oxidase activity and an increased turnover in the urea cycle. The most discriminatory metabolite observed was tryptophan, with decreased levels in SLE patients compared to control groups. Changes of tryptophan levels were related to changes in the activity of the aromatic amino acid decarboxylase (AADC) and/or to activation of the kynurenine pathway. 
  •  
2.
  • Surowiec, Izabella, et al. (författare)
  • Multivariate strategy for the sample selection and integration of multi-batch data in metabolomics
  • 2017
  • Ingår i: Metabolomics. - : SPRINGER. - 1573-3882 .- 1573-3890. ; 13:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction Availability of large cohorts of samples with related metadata provides scientists with extensive material for studies. At the same time, recent development of modern high-throughput 'omics' technologies, including metabolomics, has resulted in the potential for analysis of large sample sizes. Representative subset selection becomes critical for selection of samples from bigger cohorts and their division into analytical batches. This especially holds true when relative quantification of compound levels is used.Objectives We present a multivariate strategy for representative sample selection and integration of results from multi-batch experiments in metabolomics.Methods Multivariate characterization was applied for design of experiment based sample selection and subsequent subdivision into four analytical batches which were analyzed on different days by metabolomics profiling using gas-chromatography time-of-flight mass spectrometry (GC-TOFMS). For each batch OPLS-DA (R) was used and its p(corr) vectors were averaged to obtain combined metabolic profile. Jackknifed standard errors were used to calculate confidence intervals for each metabolite in the average p(corr) profile.Results A combined, representative metabolic profile describing differences between systemic lupus erythematosus (SLE) patients and controls was obtained and used for elucidation of metabolic pathways that could be disturbed in SLE.Conclusion Design of experiment based representative sample selection ensured diversity and minimized bias that could be introduced at this step. Combined metabolic profile enabled unified analysis and interpretation.
  •  
3.
  • Torell, Frida, et al. (författare)
  • Cytokine Profiles in Autoantibody Defined Subgroups of Systemic Lupus Erythematosus
  • 2019
  • Ingår i: Journal of Proteome Research. - : American Chemical Society (ACS). - 1535-3893 .- 1535-3907. ; 18:3, s. 1208-1217
  • Tidskriftsartikel (refereegranskat)abstract
    • The aim of this study was to evaluate how the cytokine profiles differed between autoantibody based subgroups of systemic lupus erythematosus (SLE). SLE is a systemic autoimmune disease, characterized by periods of flares (active disease) and remission (inactive disease). The disease can affect many organ systems, e.g., skin, joints, kidneys, heart, and the central nervous system (CNS). SLE patients often have an overproduction of cytokines, e.g., interferons, chemokines, and interleukins. The high cytokine levels are part of the systemic inflammation, which can lead to tissue injury. In the present study, SLE patients were divided into five groups based on their autoantibody profiles. We thus defined these five groups: ANA negative, antiphospholipid (aPL) positive, anti-Sm/anti-RNP positive, Sjögren’s syndrome (SS) antigen A and B positive, and patients positive for more than one type of autoantibodies (other SLE). Cytokines were measured using Mesoscale Discovery (MSD) multiplex analysis. On the basis of the cytokine data, ANA negative patients were the most deviating subgroup, with lower levels of interferon (IFN)-γ, tumor necrosis factor (TNF)-α, interleukin (IL)-12/IL-23p40, and interferon gamma-induced protein (IP)-10. Despite low cytokine levels in the ANA negative group, autoantibody profiles did not discriminate between different cytokine patterns.
  •  
4.
  • Dhillon, Sundeep S., et al. (författare)
  • Metabolic profiling of zebrafish embryo development from blastula period to early larval stages
  • 2019
  • Ingår i: PLOS ONE. - San Francisco : Public Library of Science. - 1932-6203. ; 14:5
  • Tidskriftsartikel (refereegranskat)abstract
    • The zebrafish embryo is a popular model for drug screening, disease modelling and molecular genetics. In this study, samples were obtained from zebrafish at different developmental stages. The stages that were chosen were 3/4, 4/5, 24, 48, 72 and 96 hours post fertilization (hpf). Each sample included fifty embryos. The samples were analysed using gas chromatography time-of-flight mass spectrometry (GC-TOF-MS). Principle component analysis (PCA) was applied to get an overview of the data and orthogonal projection to latent structure discriminant analysis (OPLS-DA) was utilised to discriminate between the developmental stages. In this way, changes in metabolite profiles during vertebrate development could be identified. Using a GC-TOF-MS metabolomics approach it was found that nucleotides and metabolic fuel (glucose) were elevated at early stages of embryogenesis, whereas at later stages amino acids and intermediates in the Krebs cycle were abundant. This agrees with zebrafish developmental biology, as organs such as the liver and pancreas develop at later stages. Thus, metabolomics of zebrafish embryos offers a unique opportunity to investigate large scale changes in metabolic processes during important developmental stages in vertebrate development. In terms of stability of the metabolic profile and viability of the embryos, it was concluded at 72 hpf was a suitable time point for the use of zebrafish as a model system in numerous scientific applications.
  •  
5.
  • Torell, Frida, et al. (författare)
  • Application of multiblock analysis on a small metabolomic multi-tissue dataset
  • 2020
  • Ingår i: Metabolites. - : MDPI. - 2218-1989 .- 2218-1989. ; 10:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Data integration has been proven to provide valuable information. The information extracted using data integration in the form of multiblock analysis can pinpoint both common and unique trends in the different blocks. When working with small multiblock datasets the number of possible integration methods is drastically reduced. To investigate the application of multiblock analysis in cases where one has a few number of samples and a lack of statistical power, we studied a small metabolomic multiblock dataset containing six blocks (i.e., tissue types), only including common metabolites. We used a single model multiblock analysis method called the joint and unique multiblock analysis (JUMBA) and compared it to a commonly used method, concatenated principal component analysis (PCA). These methods were used to detect trends in the dataset and identify underlying factors responsible for metabolic variations. Using JUMBA, we were able to interpret the extracted components and link them to relevant biological properties. JUMBA shows how the observations are related to one another, the stability of these relationships, and to what extent each of the blocks contribute to the components. These results indicate that multiblock methods can be useful even with a small number of samples
  •  
6.
  • Torell, Frida, et al. (författare)
  • Metabolic Profiling of Multiorgan Samples : Evaluation of MODY5/RCAD Mutant Mice
  • 2018
  • Ingår i: Journal of Proteome Research. - : American Chemical Society (ACS). - 1535-3893 .- 1535-3907. ; 17:7, s. 2293-2306
  • Tidskriftsartikel (refereegranskat)abstract
    • In the present study, we performed a metabolomics analysis to evaluate a MODY5/RCAD mouse mutant line as a potential model for HNF1B-associated diseases. Gas chromatography time-of-flight mass spectrometry (GC-TOF-MS) of gut, kidney, liver, muscle, pancreas, and plasma samples uncovered the tissue specific metabolite distribution. Orthogonal projections to latent structures discriminant analysis (OPLS-DA) was used to identify the differences between MODY5/RCAD and wild-type mice in each of the tissues. The differences included, for example, increased levels of amino acids in the kidneys and reduced levels of fatty acids in the muscles of the MODY5/RCAD mice. Interestingly, campesterol was found in higher concentrations in the MODY5/RCAD mice, with a four-fold and three-fold increase in kidneys and pancreas, respectively. As expected, the MODY5/RCAD mice displayed signs of impaired renal function in addition to disturbed liver lipid metabolism, with increased lipid and fatty acid accumulation in the liver. From a metabolomics perspective, the MODY5/RCAD model was proven to display a metabolic pattern similar to what would be suspected in HNF1B-associated diseases. These findings were in line with the presumed outcome of the mutation based on the different anatomy and function of the tissues as well as the effect of the mutation on development.
  •  
7.
  • Torell, Frida, et al. (författare)
  • Multi-Organ Contribution to the Metabolic Plasma Profile Using Hierarchical Modelling
  • 2015
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 10:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Hierarchical modelling was applied in order to identify the organs that contribute to the levels of metabolites in plasma. Plasma and organ samples from gut, kidney, liver, muscle and pancreas were obtained from mice. The samples were analysed using gas chromatography time-of-flight mass spectrometry (GC TOF-MS) at the Swedish Metabolomics centre, Umea University, Sweden. The multivariate analysis was performed by means of principal component analysis (PCA) and orthogonal projections to latent structures (OPLS). The main goal of this study was to investigate how each organ contributes to the metabolic plasma profile. This was performed using hierarchical modelling. Each organ was found to have a unique metabolic profile. The hierarchical modelling showed that the gut, kidney and liver demonstrated the greatest contribution to the metabolic pattern of plasma. For example, we found that metabolites were absorbed in the gut and transported to the plasma. The kidneys excrete branched chain amino acids (BCAAs) and fatty acids are transported in the plasma to the muscles and liver. Lactic acid was also found to be transported from the pancreas to plasma. The results indicated that hierarchical modelling can be utilized to identify the organ contribution of unknown metabolites to the metabolic profile of plasma.
  •  
8.
  •  
9.
  • Torell, Frida, 1988- (författare)
  • Multivariate data analysis of metabolomic multi-tissue samples
  • 2020
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Multi-tissue metabolomics involves characterisation of the metabolome of several tissue types. The metabolome consists of small chemical entities of low molecular weight called metabolites, which are constantly produced and interchanged through a vast variety of biochemical reactions occurring throughout living organisms. Metabolome alterations can be attributed to genetics, environment, and diseases. We used gas chromatography timeof-flight mass spectrometry (GC TOF-MS) to characterise the metabolome of mouse organ samples: gut, kidney, liver, muscle, pancreas and plasma. Samples were obtained from wild-type mice and mice carrying a mutation in the hepatocyte nuclear factor 1b (HNF1b) gene, referred to as MODY5/RCAD (for maturity onset diabetes of the young 5/renal cysts and diabetes syndrome) mice. MODY is a class of hereditary diabetes mellitus, and MODY5 is caused by mutations in HNF1B, resulting in a wide range of manifestations, including renal diseases, kidney and genitourinary malformation, and elevation of liver enzymes. Today, MODY5 in humans is diagnosed using genetic tests, and varying referral rates and manifestations have resulted in misdiagnosis. Our main focus was therefore to increase understanding of the metabolism associated with MODY5/RCAD by studying the metabolic profiles of individual organs and plasma (Paper I) from MODY5/RCAD mutant and wildtype mice. The mouse model displayed an overall metabolic pattern consistent with the presumed outcome of the mutation in humans, making the MODY5/RCAD model suitable for studies of HNF1B-associated diseases. An understanding of metabolite origin would be beneficial for understanding the plasma profile associated with MODY5/RCAD. We used hierarchical modelling to provide an understanding of metabolite origin by detecting how metabolites from the organs contributed to the plasma metabolic profile (Paper II). Both specific and overall organ metabolite contributions to the plasma metabolic profile were studied. Further exploration of the dataset involved study of its innate variation using joint and unique multiblock analysis (JUMBA; Paper III). In addition, we explored the effects of improper sample handling for metabolomic multi-tissue data, and we studied the similarities and differences in the responses to thawing between organ tissues (Paper IV) and plasma samples (Paper V), thus identifying metabolic profiles that could indicate compromised samples. These profiles could be beneficial for large-scale collaborations that involve sample exposure to unsuitable conditions. Altogether, we have contributed to an increased understanding of the MODY5/RCAD multi-tissue metabolomic dataset and worked up protocols and strategies for how small datasets should be handled.
  •  
10.
  • Torell, Frida, et al. (författare)
  • The effects of thawing on the plasma metabolome : evaluating differences between thawed plasma and multi-organ samples
  • 2017
  • Ingår i: Metabolomics. - : Springer. - 1573-3882 .- 1573-3890. ; 13:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: Post-collection handling, storage and transportation can affect the quality of blood samples. Pre-analytical biases can easily be introduced and can jeopardize accurate profiling of the plasma metabolome. Consequently, a mouse study must be carefully planned in order to avoid any kind of bias that can be introduced, in order not to compromise the outcome of the study. The storage and shipment of the samples should be made in such a way that the freeze–thaw cycles are kept to a minimum. In order to keep the latent effects on the stability of the blood metabolome to a minimum it is essential to study the effect that the post-collection and pre-analytical error have on the metabolome. Objectives: The aim of this study was to investigate the effects of thawing on the metabolic profiles of different sample types. Methods: In the present study, a metabolomics approach was utilized to obtain a thawing profile of plasma samples obtained on three different days of experiment. The plasma samples were collected from the tail on day 1 and 3, while retro-orbital sampling was used on day 5. The samples were analysed using gas chromatography time-of-flight mass spectrometry (GC TOF-MS). Results: The thawed plasma samples were found to be characterized by higher levels of amino acids, fatty acids, glycerol metabolites and purine and pyrimidine metabolites as a result of protein degradation, cell degradation and increased phospholipase activity. The consensus profile was thereafter compared to the previously published study comparing thawing profiles of tissue samples from gut, kidney, liver, muscle and pancreas. Conclusions: The comparison between thawed organ samples and thawed plasma samples indicate that the organ samples are more sensitive to thawing, however thawing still affected all investigated sample types.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy