SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Tsao Ming Sound) "

Sökning: WFRF:(Tsao Ming Sound)

  • Resultat 1-10 av 17
  • [1]2Nästa
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Carreras-Torres, Robert, et al. (författare)
  • Obesity, metabolic factors and risk of different histological types of lung cancer a Mendelian randomization study
  • 2017
  • Ingår i: PLoS ONE. - Public library science. - 1932-6203 .- 1932-6203. ; 12:6
  • Tidskriftsartikel (refereegranskat)abstract
    • <p>Background: Assessing the relationship between lung cancer and metabolic conditions is challenging because of the confounding effect of tobacco. Mendelian randomization (MR), or the use of genetic instrumental variables to assess causality, may help to identify the metabolic drivers of lung cancer. Methods and findings: We identified genetic instruments for potential metabolic risk factors and evaluated these in relation to risk using 29,266 lung cancer cases (including 11,273 adenocarcinomas, 7,426 squamous cell and 2,664 small cell cases) and 56,450 controls. The MR risk analysis suggested a causal effect of body mass index (BMI) on lung cancer risk for two of the three major histological subtypes, with evidence of a risk increase for squamous cell carcinoma (odds ratio (OR) [95% confidence interval (CI)] = 1.20 [1.01-1.43] and for small cell lung cancer (OR [95% CI] = 1.52 [1.15-2.00]) for each standard deviation (SD) increase in BMI [4.6 kg/m(2)]), but not for adenocarcinoma (OR [95% CI] = 0.93 [0.79-1.08]) (P-heterogeneity = 4.3x10(-3)). Additional analysis using a genetic instrument for BMI showed that each SD increase in BMI increased cigarette consumption by 1.27 cigarettes per day (P = 2.1x10(-3)), providing novel evidence that a genetic susceptibility to obesity influences smoking patterns. There was also evidence that low-density lipoprotein cholesterol was inversely associated with lung cancer overall risk (OR [95% CI] = 0.90 [0.84-0.97] per SD of 38 mg/dl), while fasting insulin was positively associated (OR [95% CI] = 1.63 [1.25-2.13] per SD of 44.4 pmol/l). Sensitivity analyses including a weighted-median approach and MR-Egger test did not detect other pleiotropic effects biasing the main results. Conclusions: Our results are consistent with a causal role of fasting insulin and low-density lipoprotein cholesterol in lung cancer etiology, as well as for BMI in squamous cell and small cell carcinoma. The latter relation may be mediated by a previously unrecognized effect of obesity on smoking behavior.</p>
  •  
2.
  • Carreras-Torres, Robert, et al. (författare)
  • Obesity, metabolic factors and risk of different histological types of lung cancer : A Mendelian randomization study
  • 2017
  • Ingår i: PLoS ONE. - Public Library of Science. - 1932-6203. ; 12:6
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Assessing the relationship between lung cancer and metabolic conditions is challenging because of the confounding effect of tobacco. Mendelian randomization (MR), or the use of genetic instrumental variables to assess causality, may help to identify the metabolic drivers of lung cancer.METHODS AND FINDINGS: We identified genetic instruments for potential metabolic risk factors and evaluated these in relation to risk using 29,266 lung cancer cases (including 11,273 adenocarcinomas, 7,426 squamous cell and 2,664 small cell cases) and 56,450 controls. The MR risk analysis suggested a causal effect of body mass index (BMI) on lung cancer risk for two of the three major histological subtypes, with evidence of a risk increase for squamous cell carcinoma (odds ratio (OR) [95% confidence interval (CI)] = 1.20 [1.01-1.43] and for small cell lung cancer (OR [95%CI] = 1.52 [1.15-2.00]) for each standard deviation (SD) increase in BMI [4.6 kg/m2]), but not for adenocarcinoma (OR [95%CI] = 0.93 [0.79-1.08]) (Pheterogeneity = 4.3x10-3). Additional analysis using a genetic instrument for BMI showed that each SD increase in BMI increased cigarette consumption by 1.27 cigarettes per day (P = 2.1x10-3), providing novel evidence that a genetic susceptibility to obesity influences smoking patterns. There was also evidence that low-density lipoprotein cholesterol was inversely associated with lung cancer overall risk (OR [95%CI] = 0.90 [0.84-0.97] per SD of 38 mg/dl), while fasting insulin was positively associated (OR [95%CI] = 1.63 [1.25-2.13] per SD of 44.4 pmol/l). Sensitivity analyses including a weighted-median approach and MR-Egger test did not detect other pleiotropic effects biasing the main results.CONCLUSIONS: Our results are consistent with a causal role of fasting insulin and low-density lipoprotein cholesterol in lung cancer etiology, as well as for BMI in squamous cell and small cell carcinoma. The latter relation may be mediated by a previously unrecognized effect of obesity on smoking behavior.
3.
  • Dai, Juncheng, et al. (författare)
  • Systematic analyses of regulatory variants in DNase I hypersensitive sites identified two novel lung cancer susceptibility loci
  • 2019
  • Ingår i: Carcinogenesis. - Oxford University Press. - 0143-3334 .- 1460-2180. ; 40:3, s. 432-440
  • Tidskriftsartikel (refereegranskat)abstract
    • <p>DNase I hypersensitive sites (DHS) are abundant in regulatory elements, such as promoter, enhancer and transcription factor binding sites. Many studies have revealed that disease-associated variants were concentrated in DHS-related regions. However, limited studies are available on the roles of DHS-related variants in lung cancer. In this study, we performed a large-scale case-control study with 20 871 lung cancer cases and 15 971 controls to evaluate the associations between regulatory genetic variants in DHS and lung cancer susceptibility. The expression quantitative trait loci (eQTL) analysis and pathway-enrichment analysis were performed to identify the possible target genes and pathways. In addition, we performed motif-based analysis to explore the lung-cancer-related motifs using sequence kernel association test. Two novel variants, rs186332 in 20q13.3 (C&gt;T, odds ratio [OR] = 1.17, 95% confidence interval [95% CI]: 1.10-1.24, P = 8.45 x 10(-7)) and rs4839323 in 1p13.2 (T&gt;C, OR = 0.92, 95% CI: 0.89-0.95, P = 1.02 x 10(-6)) showed significant association with lung cancer risk. The eQTL analysis suggested that these two SNPs might regulate the expression of MRGBP and SLC16A1, respectively. What's more, the expression of both MRGBP and SLC16A1 was aberrantly elevated in lung tumor tissues. The motif-based analysis identified 10 motifs related to the risk of lung cancer (P &lt; 1.71 x 10(-4)). Our findings suggested that variants in DHS might modify lung cancer susceptibility through regulating the expression of surrounding genes. This study provided us a deeper insight into the roles of DHS-related genetic variants for lung cancer.</p>
  •  
4.
  • Dai, Juncheng, et al. (författare)
  • Systematic analyses of regulatory variants in DNase I hypersensitive sites identified two novel lung cancer susceptibility loci
  • 2019
  • Ingår i: Carcinogenesis. - Oxford University Press. - 0143-3334. ; 40:3, s. 432-440
  • Tidskriftsartikel (refereegranskat)abstract
    • DNase I hypersensitive sites (DHS) are abundant in regulatory elements, such as promoter, enhancer and transcription factor binding sites. Many studies have revealed that disease-associated variants were concentrated in DHS-related regions. However, limited studies are available on the roles of DHS-related variants in lung cancer. In this study, we performed a large-scale case-control study with 20 871 lung cancer cases and 15 971 controls to evaluate the associations between regulatory genetic variants in DHS and lung cancer susceptibility. The expression quantitative trait loci (eQTL) analysis and pathway-enrichment analysis were performed to identify the possible target genes and pathways. In addition, we performed motif-based analysis to explore the lung-cancer-related motifs using sequence kernel association test. Two novel variants, rs186332 in 20q13.3 (C>T, odds ratio [OR] = 1.17, 95% confidence interval [95% CI]: 1.10-1.24, P = 8.45 × 10-7) and rs4839323 in 1p13.2 (T>C, OR = 0.92, 95% CI: 0.89-0.95, P = 1.02 × 10-6) showed significant association with lung cancer risk. The eQTL analysis suggested that these two SNPs might regulate the expression of MRGBP and SLC16A1, respectively. What's more, the expression of both MRGBP and SLC16A1 was aberrantly elevated in lung tumor tissues. The motif-based analysis identified 10 motifs related to the risk of lung cancer (P < 1.71 × 10-4). Our findings suggested that variants in DHS might modify lung cancer susceptibility through regulating the expression of surrounding genes. This study provided us a deeper insight into the roles of DHS-related genetic variants for lung cancer.
  •  
5.
  • Ferreiro-Iglesias, Aida, et al. (författare)
  • Fine mapping of MHC region in lung cancer highlights independent susceptibility loci by ethnicity
  • 2018
  • Ingår i: Nature Communications. - Nature Publishing Group. - 2041-1723. ; 9:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Lung cancer has several genetic associations identified within the major histocompatibility complex (MHC); although the basis for these associations remains elusive. Here, we analyze MHC genetic variation among 26,044 lung cancer patients and 20,836 controls densely genotyped across the MHC, using the Illumina Illumina OncoArray or Illumina 660W SNP microarray. We impute sequence variation in classical HLA genes, fine-map MHC associations for lung cancer risk with major histologies and compare results between ethnicities. Independent and novel associations within HLA genes are identified in Europeans including amino acids in the HLA-B*0801 peptide binding groove and an independent HLA-DQB1*06 loci group. In Asians, associations are driven by two independent HLA allele sets that both increase risk in HLA-DQB1*0401 and HLA-DRB1*0701; the latter better represented by the amino acid Ala-104. These results implicate several HLA–tumor peptide interactions as the major MHC factor modulating lung cancer susceptibility.
6.
  • Hudson, Thomas J., et al. (författare)
  • International network of cancer genome projects
  • 2010
  • Ingår i: Nature. - Nature Publishing Group. - 0028-0836. ; 464:7291, s. 993-998
  • Tidskriftsartikel (refereegranskat)abstract
    • The International Cancer Genome Consortium (ICGC) was launched to coordinate large-scale cancer genome studies in tumours from 50 different cancer types and/or subtypes that are of clinical and societal importance across the globe. Systematic studies of more than 25,000 cancer genomes at the genomic, epigenomic and transcriptomic levels will reveal the repertoire of oncogenic mutations, uncover traces of the mutagenic influences, define clinically relevant subtypes for prognosis and therapeutic management, and enable the development of new cancer therapies.
  •  
7.
  • Hudson, Thomas J., et al. (författare)
  • International network of cancer genome projects
  • 2010
  • Ingår i: Nature. - 0028-0836 .- 1476-4687. ; 464:7291, s. 993-998
  • Tidskriftsartikel (refereegranskat)abstract
    • <p>The International Cancer Genome Consortium (ICGC) was launched to coordinate large-scale cancer genome studies in tumours from 50 different cancer types and/or subtypes that are of clinical and societal importance across the globe. Systematic studies of more than 25,000 cancer genomes at the genomic, epigenomic and transcriptomic levels will reveal the repertoire of oncogenic mutations, uncover traces of the mutagenic influences, define clinically relevant subtypes for prognosis and therapeutic management, and enable the development of new cancer therapies.</p>
  •  
8.
  • Ji, Xuemei, et al. (författare)
  • Identification of susceptibility pathways for the role of chromosome 15q25.1 in modifying lung cancer risk
  • 2018
  • Ingår i: Nature Communications. - NATURE PUBLISHING GROUP. - 2041-1723 .- 2041-1723. ; 9, s. 1-15
  • Tidskriftsartikel (refereegranskat)abstract
    • <p>Genome-wide association studies (GWAS) identified the chromosome 15q25.1 locus as a leading susceptibility region for lung cancer. However, the pathogenic pathways, through which susceptibility SNPs within chromosome 15q25.1 affects lung cancer risk, have not been explored. We analyzed three cohorts with GWAS data consisting 42,901 individuals and lung expression quantitative trait loci (eQTL) data on 409 individuals to identify and validate the underlying pathways and to investigate the combined effect of genes from the identified susceptibility pathways. The KEGG neuroactive ligand receptor interaction pathway, two Reactome pathways, and 22 Gene Ontology terms were identified and replicated to be significantly associated with lung cancer risk, with P values less than 0.05 and FDR less than 0.1. Functional annotation of eQTL analysis results showed that the neuroactive ligand receptor interaction pathway and gated channel activity were involved in lung cancer risk. These pathways provide important insights for the etiology of lung cancer.</p>
  •  
9.
  • Kerr, Keith M, et al. (författare)
  • Programmed Death-Ligand 1 Immunohistochemistry in Lung Cancer : In what state is this art?
  • 2015
  • Ingår i: Journal of Thoracic Oncology. - 1556-0864 .- 1556-1380. ; 10:7, s. 985-989
  • Tidskriftsartikel (refereegranskat)abstract
    • <p>Therapeutic antibodies to programmed death receptor 1 (PD-1) and its ligand PD-L1 show promising clinical results. Anti-PD-L1 immunohistochemistry (IHC) may be a biomarker to select patients more likely to respond to these treatments. However, the development of at least four different therapeutics, each with a different anti-PD-L1 IHC assay, has raised concerns among pathologists and oncologists alike. This article reviews existing data on the IHC biomarker aspects of studies using these drugs in non-small-cell lung cancer (NSCLC) and considers the challenges ahead, should these drug/IHC assay combinations reach routine practice. For each the known biomarker assays in development, there is a different monoclonal IHC antibody clone, produced by one of two diagnostics companies. Each test requires proprietary staining platforms and uses different definitions of a "positive" test for PD-L1 expression, on tumor cells and, in one test, also on tumor infiltrating immune cells. There are still considerable gaps in our knowledge of the technical aspects of these tests, and of the biological implications and associations of PD-L1 expression in NSCLC, considering heterogeneity of expression, dynamic changes in expression, and prognostic implications among other factors. The International Association for the Study of Lung Cancer Pathology Committee raises the prospect of trying not only to harmonize and standardize testing for PD-L1 by IHC, at least at a technical level, but also, ideally, as a predictive marker, to facilitate availability of this test and a promising treatment for patients with NSCLC.</p>
  •  
10.
  • Lantuejoul, Sylvie, et al. (författare)
  • PD-L1 Testing for Lung Cancer in 2019 : Perspective From the IASLC Pathology Committee
  • 2020
  • Ingår i: Journal of Thoracic Oncology. - 1556-0864 .- 1556-1380. ; 15:4, s. 499-519
  • Forskningsöversikt (refereegranskat)abstract
    • <p>The recent development of immune checkpoint inhibitors (ICIs) has led to promising advances in the treatment of patients with NSCLC and SCLC with advanced or metastatic disease. Most ICIs target programmed cell death protein 1 (PD-1) or programmed death ligand 1 (PD-L1) axis with the aim of restoring antitumor immunity. Multiple clinical trials for ICIs have evaluated a predictive value of PD-L1 protein expression in tumor cells and tumor-infiltrating immune cells (ICs) by immunohistochemistry (IHC), for which different assays with specific IHC platforms were applied. Of those, some PD-L1 IHC assays have been validated for the prescription of the corresponding agent for first- or second-line treatment. However, not all laboratories are equipped with the dedicated platforms, and many laboratories have set up in-house or laboratory-developed tests that are more affordable than the generally expensive clinical trial-validated assays. Although PD-L1 IHC test is now deployed in most pathology laboratories, its appropriate implementation and interpretation are critical as a predictive biomarker and can be challenging owing to the multiple antibody clones and platforms or assays available and given the typically small size of samples provided. Because many articles have been published since the issue of the IASLC Atlas of PD-L1 Immunohistochemistry Testing in Lung Cancer, this review by the IASLC Pathology Committee provides updates on the indications of ICIs for lung cancer in 2019 and discusses important considerations on preanalytical, analytical, and postanalytical aspects of PD-L1 IHC testing, including specimen type, validation of assays, external quality assurance, and training.</p>
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 17
  • [1]2Nästa
Åtkomst
fritt online (6)
Typ av publikation
tidskriftsartikel (16)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (17)
Författare/redaktör
Grankvist, Kjell, (10)
Kiemeney, Lambertus ... (10)
Amos, Christopher I. (10)
Aldrich, Melinda C (10)
Chen, Chu, (10)
Field, John K., (10)
visa fler...
Lam, Stephen, (10)
Lazarus, Philip, (10)
Schabath, Matthew B. ... (10)
Tardon, Adonina, (10)
Hung, Rayjean J., (10)
Wu, Xifeng (10)
Manjer, Jonas, (9)
Le Marchand, Loïc (9)
Bojesen, Stig E. (9)
Yuan, Jian-Min (9)
Christiani, David C. ... (9)
Johansson, Mattias (8)
Johansson, Mikael, (8)
Brennan, Paul, (8)
Liu, Geoffrey, (8)
Shen, Hongbing (8)
Haugen, Aage (8)
Duell, Eric J. (7)
Holcátová, Ivana, (7)
Zaridze, David (7)
Janout, Vladimir (7)
Rennert, Gad (7)
Davies, Michael P A (7)
Hong, Yun-Chul (7)
van der Heijden, Eri ... (7)
Melander, Olle, (6)
Risch, Angela (6)
Landi, Maria Teresa (6)
McKay, James D., (6)
Dai, Juncheng (6)
Lissowska, Jolanta (5)
Botling, Johan (5)
Nicholson, Andrew G (5)
Goodman, Gary E. (5)
Scelo, Ghislaine (5)
Yatabe, Yasushi (5)
Carreras-Torres, Rob ... (5)
Arnold, Susanne, (5)
Woll, Penella, (5)
Brhane, Yonathan (5)
Zong, Xuchen (5)
Arnold, Susanne M. (5)
Marcus, Michael W. (5)
Swiatkowska, Beata (5)
visa färre...
Lärosäte
Umeå universitet (6)
Lunds universitet (5)
Uppsala universitet (5)
Kungliga Tekniska Högskolan (1)
Karolinska Institutet (1)
Språk
Engelska (17)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (17)

År

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy